A library to manipulate Z-polyhedron in image representation

Guillaume Iooss, Sanjay Rajopadhye

Colorado State University

January 23, 2012
Motivation: the polyhedral model

- *Polyhedral model*: mathematical framework widely used for program analysis/transformation.
 - For example, works perfectly to represent regular loop nest.
Introduction

Motivation: the polyhedral model

- *Polyhedral model*: mathematical framework widely used for program analysis/transformation.
 ⇒ For example, works perfectly to represent regular loop nest.

- Irregular loop nest (*if* conditions, modulos, non-unit-stride loops...): this model does not apply directly.
 ⇒ We can still deal with these situations (by adding extra dimensions), but less practical.
Motivation: the polyhedral model

- **Polyhedral model**: mathematical framework widely used for program analysis/transformation.
 - For example, works perfectly to represent regular loop nest.

- Irregular loop nest (**if** conditions, modulos, non-unit-stride loops...): this model does not apply directly.
 - We can still deal with these situations (by adding extra dimensions), but less practical.

- **Z-polyhedron**: mathematical object that extends integer polyhedron.
 - Using them is more convenient to deal with such cases.
Affine Lattice

- **Affine Lattice**: \(\mathcal{L} = \{L \cdot z + l | z \in \mathbb{Z}^n \} \subset \mathbb{Z}^m \), \(L \) and \(l \) integer.

- **Example**:

 \[
 L = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}, \quad l = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
 \]

- **Canonical form**: \(\begin{bmatrix} 1 & 0 \\ l & L \end{bmatrix} \) is in HNF and \(L \) is full-column rank.

- **Stability properties**: Intersection, difference (infinite and finite), image/preimage by an integer affine function.
Z-polyhedra

- **Z-polyhedron**: Intersection between an integer polyhedron \mathcal{P} and an affine lattice \mathcal{L}: $\mathcal{Z} = \mathcal{P} \cap \mathcal{L}$.

- Example:

![Diagram of Z-polyhedron]

- **Stability properties**:
 - Intersection, difference, preimage by an integer affine function
 - Image by an unimodular integer affine function is a Z-polyhedron
 - Image by a non-unimodular integer affine function is a union of Z-polyhedra
Two possible representations of a Z-polyhedron:
- Intersection representation: \(Z = \mathcal{L} \cap \mathcal{P} \) (definition)
- Image representation: After some rewriting \(Z = \{ Lz + l | z \in \mathcal{P}_c \} \) with \(\mathcal{P}_c = \{ z | Qz + q \geq 0 \land Az + b = 0 \} \)
Two possible representations of a Z-polyhedron:
- Intersection representation: $\mathcal{Z} = \mathcal{L} \cap \mathcal{P}$ (definition)
- Image representation: After some rewriting $\mathcal{Z} = \{ L.z + l | z \in \mathcal{P}_c \}$ with $\mathcal{P}_c = \{ z | Q.z + q \geq 0 \land A.z + b = 0 \}$

Image representation correspond to the definition of a Linear Bounded Lattice (LBL). However, all LBL is not a Z-polyhedron. (example: $\{ i + 3j | 0 \leq j \leq i \leq 3 \} = [0, 12] - \{ 8, 10, 11 \}$).

LeVerge’s sufficient condition:

$\mathcal{Z} = \{ L.z + l | z \in \mathcal{P}_c \}$ is a Z-polyhedron if $\text{Ker} \begin{pmatrix} L \\ Q_0 \end{pmatrix} \subset \text{Ker}(Q)$, with $\text{Ker}(Q_0)$ the context of the coordinate polyhedron \mathcal{P}_c.
Implemented algorithms: described in [Gautam & Rajopadhye, 2007].

- Intuitively, same algorithms that for the intersection representation.
- Slight modifications done to manipulate Z-polyhedron not in canonical form (condition of full-dimensionality on P_c).
- Because of that, proposed image algorithm does not work anymore.
Algorithms

- **Implemented algorithms:** described in [Gautam & Rajopadhye, 2007].
 - Intuitively, same algorithms that for the intersection representation.
 - Slight modifications done to manipulate Z-polyhedron not in canonical form (condition of full-dimensionality on \mathcal{P}_c).
 - Because of that, proposed image algorithm does not work anymore.

- **Image algorithm:** described in [Seghir, Loechner & Meister, 2010].
 - **Idea:** Write the image as a Presburger set and eliminate the existential variables one by one (using equalities, then inequalities).
 - Algorithm translated in image representation.
 - Our current implementation: no heuristic to select which existential variable to eliminate first. Not fully optimized.
Related work

- **ZPolyTrans** (cf previous presentation): http://zpolytrans.gforge.inria.fr
 Also a library to manipulate Z-polyhedron, but in C and based on the intersection representation.

- **Omega** is a library that solves feasibility of a Pressburger set.

- **ISL** is a polyhedral library. It handles Z-polyhedra by using existentially quantified dimensions.
Implementation

- This library has been developed in Java.
 Source code: http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/

- Polymodel used as an underlying polyhedral library (IRISA):
 - Interface to manipulate polyhedron
 - Currently implemented interface: ISL
Comparison with integer polyhedra

<table>
<thead>
<tr>
<th>Operations</th>
<th>Polyhedron</th>
<th>Z-polyhedron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection</td>
<td>$O(N_{\text{constraints}})$</td>
<td>$O(n^4 \cdot \log(</td>
</tr>
<tr>
<td>Difference</td>
<td>$O(N_{\text{constraints}}^2)$</td>
<td>$O(n^4 \cdot \log(</td>
</tr>
<tr>
<td>Preimage</td>
<td>$O(n^3)$</td>
<td>$O(n^4 \cdot \log(</td>
</tr>
<tr>
<td>Image (unimodular)</td>
<td>$O(n^3)$</td>
<td>$O(n^3)$ (matrix mult)</td>
</tr>
<tr>
<td>Image (non unimodular)</td>
<td>-</td>
<td>Exponential</td>
</tr>
</tbody>
</table>
Comparison with integer polyhedra

<table>
<thead>
<tr>
<th>Operations</th>
<th>Polyhedron</th>
<th>Z-polyhedron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection</td>
<td>$O(N_{\text{constraints}})$</td>
<td>$O(n^4 \cdot \log(</td>
</tr>
<tr>
<td>Difference</td>
<td>$O(N^2_{\text{constraints}})$</td>
<td>$O(n^4 \cdot \log(</td>
</tr>
<tr>
<td>Preimage</td>
<td>$O(n^3)$</td>
<td>$O(n^4 \cdot \log(</td>
</tr>
<tr>
<td>Image (unimodal)</td>
<td>$O(n^3)$</td>
<td>$O(n^3)$ (matrix mult)</td>
</tr>
<tr>
<td>Image (non unimodal)</td>
<td>-</td>
<td>Exponential</td>
</tr>
</tbody>
</table>

- Complexity of Z-polyhedral operations for the 2 representations are asymptotically the same:
 - Intersection/difference: intersection representation faster.
 - Image (unimodal/non unimodal): image representation faster.
Future work

- **About the library:** Implement the missing operations:
 - Going back from the image to the intersection representation,
 - Getting the canonical form / making the coordinate polyhedron full-dimensional,
 - Equality test.

⇒ Need advanced polyhedral feature that are not (yet?) in *PolyModel*.

- Some algorithms can be improved (ex: number of generated Z-polyhedron for a difference).
Future work

- **About the library:** Implement the missing operations:
 - Going back from the image to the intersection representation,
 - Getting the canonical form / making the coordinate polyhedron full-dimensional,
 - Equality test.

⇒ Need advanced polyhedral feature that are not (yet?) in *PolyModel*.

- Some algorithms can be improved (ex: number of generated Z-polyhedron for a difference).

- **About Z-polyhedra:** For program analysis, how does it compared in term of speed with the polyhedral model?
Thanks for listening

Do you have any questions?