Joint Scheduling and Layout Optimization to Enable Multi-Level Vectorization

Nicolas Vasilache1, Benoit Meister1, Muthu Baskaran1, and Richard Lethin1
1\{vasilache,meister,baskaran,lethin\}@reservoir.com
1Reservoir Labs Inc., New-York, NY, USA

ABSTRACT
We describe a novel loop nest scheduling strategy implemented in the R-Stream compiler1: the first scheduling formulation to jointly optimize a trade-off between parallelism, locality, contiguity of array accesses and data layout permutations in a single complete formulation. Our search space contains the maximal amount of vectorization in the program and automatically finds opportunities for automatic multi-level vectorization and simd-ization. Using our model of memory layout, we demonstrate that the amount of contiguous accesses, vectorization and simd-ization can be increased modulo data layout permutations automatically exposed by our technique. This additional degree of freedom opens new opportunities for the scheduler that were previously out of reach. But perhaps the most significant aspect of this work is to encompass an ever increasing number of traditional optimization phases into a single pass. Our approach offers a good solution to the fundamental problem of phase ordering of high-level loop transformations.

1. INTRODUCTION

The problem of optimizing loop nests has been extensively studied in the last five decades [13]. So-called “traditional compilers” perform these optimizations on a tree-based representation of the program. Unfortunately, this representation suffers from crippling limitations such as code explosion arising from the application of successive transformations and the dreaded phase ordering problem. The polyhedral model [2, 8, 10] is a mathematical representation that greatly reduces the code explosion and phase ordering issues related to sequences of loop transformations [9]. A notable property of this model is that a single solution to an optimization problem is a combination of many loop transformations in the tree-based representation. Such a solution represents a whole class of (infinitely many) sequences of equivalent program transformations. Intuitively, the reader may use the simple analogy of a line in a plane: a line contains an infinite number of points (the transformations in the tree-based representation) but it can be described by a single equality (the representant of this class of transformations in the polyhedral representation). Despite all the recent progress in optimizing the schedule of loop nests at a high level [5, 6, 17], a general formulation for discovering vectorization is still missing.

This paper is decomposed as follows. First we remind the reader of polyhedral concepts and restate one of the results of Vasilache’s thesis: the construction of a convex linear space containing all legal affine schedules of loop nests [19]. In the following section, we build on this space to incrementally introduce constraints expressing contiguity of a single array reference along an arbitrary memory dimension and an arbitrary schedule dimension. We then mix constraints on multiple arrays and parallelism to derive vectorization constraints. These constraints allow the extraction of vector loops at various levels in the loop nest hierarchy. We proceed by adding data layout permutations to our formulation and discuss the benefits this additional degree of freedom entails. Lastly we discuss the quality of the schedules and compilation time implications of our successive formulations on a set of 400 kernel benchmarks.

2. THE CONVEX AFFINE SPACE OF ALL LEGAL SCHEDULES

The polyhedral model is a mathematical abstraction to represent and reason about programs in a compact representation. R-Stream operates on a generalized dependence graph (GDG)-based IR containing, among other, the following information.

2.1 GDG-based Intermediate Representation

Statements : A statement S is a set of operations grouped together in our internal representation. Statements are the nodes of the GDG. A statement in the model often corresponds to a statement in the original program. Depending on the level of abstraction, a statement can be arbitrarily simple (i.e. micro-code) or arbitrarily complex (i.e. external precompiled object).

Iteration Domains : An iteration domain D^S is an ordered set of iterations associated to each statement S. It describes the loop iterations in the original program which control the execution of S. To model multiple levels of nested loops, iteration domains are multi-dimensional sets. We de-
note the order between 2 iterations i_1 and i_2 of S by $i_1 \ll i_2$ if $S(i_1)$ occurs before $S(i_2)$ in the program.

Memory References: A memory reference F is a function that maps domain iterations to locations in the memory space. The image of D^S by F represents the set of memory locations read or written by S through memory reference F. If F is injective, distinct memory locations are touched; otherwise, memory reuse exists within the program. Each statement can access multiple memory references in read and/or write mode.

Schedules: A scheduling function Θ^S is a function that maps the iterations of S to time. It is a partial order that represents the relative execution order of each iteration of S relative to all other iterations of any statement in the program. We use well-established terminology [9] where Θ^S is decomposed in (1) a linear part α that encompasses unimodular and non-unimodular loop transformations, (2) a parametric constant part Γ for expressing multi-dimensional shifts and (3) a constant β vector that encodes all possible imperfectly nested loop structures. If the α function is injective, the output program is sequential; otherwise parallel.

Dependences: A dependence $(T \rightarrow S)$ is a relation between the set of iterations of S and T. It conveys the information that some iteration $i^T \in D^T$ depends on $i^S \in D^S$ (i.e. they access the same memory location by application of a memory reference) and that $i^T \ll i^S$ in the original program. We write the set relation $\{(i^T, i^S) \in (T \rightarrow S)\}$ to refer to the specific iterations of T and S that take part in the dependence. With this notation, in the case of a read-after-write dependence, T would be a read and S would be a write.

2.2 Multi-dimensional Formulation

Dependences in the program are captured by dependence edges in the GDG. Each edge is decorated by a dependence polyhedron. Fauettier [8] showed that a necessary and sufficient condition for a transformed program to be legal is that the order of all iterations in a dependence be preserved: $\forall (i^T, i^S) \in (T \rightarrow S)$, $\Theta^S(i^S) \ll \Theta^T(i^T)$. The affine form of Farkas’ lemma allows the linearization of such constraint into a linear programming problem:

LEMA 2.1. Let D be a nonempty polyhedron defined by $A\vec{x} + \vec{b} \geq \vec{0}$. Any affine function $f(\vec{x})$ is non-negative everywhere in D iff it is a positive affine combination: $f(\vec{x}) = \lambda_0 + \vec{X} (A\vec{x} + \vec{b})$, with $\lambda_0 \geq 0$ and $\vec{X} \geq \vec{0}$, λ_0 and \vec{X} are called Farkas multipliers.

This relationship is based on lexicographic ordering. Consider a loop nest with induction variables $(i_1 \ldots i_d)$. Each dependence relation must be (1) strongly satisfied at some depth $k \in [1, d]$ (i.e. $\Theta^T_k - \Theta^S_k \geq 1$), (2) weakly satisfied until that depth (i.e. $1 \leq l < k \Rightarrow \Theta^T_l - \Theta^S_l \geq 0$), and (3) not influence correctness after is has been strongly satisfied (i.e. $k < l \leq d \Rightarrow \Theta^T_l - \Theta^S_l \geq -N_{\infty}(\vec{n} + 1)$), where N_{∞} is a large enough constant.\footnote{This relationship is based on lexicographic ordering: the equation $\vec{x} \ll \vec{0}$ is satisfied for $\vec{x} = (0, 0, 1, -1)$ but not for $\vec{x} = (-1, 0, 2)$.} and \vec{n} represents the global parameters in the program). This definition of satisfaction encompasses traditional correctness criteria of loop-carried and loop-independent dependences [13].

Each dependence must be strongly satisfied at some depth k. We encode the satisfaction of a dependence $(T \rightarrow S)$ at a depth k by a decision variable $\delta_k^{(T \rightarrow S)} \in \{0, 1\}$. Following a simplification of Vasilevich’s formulation proposed by Feauttier, we write: $\forall (T \rightarrow S), \sum_{k=1}^{\min(d^S, d^T)} \delta_k^{(T \rightarrow S)} = 1$. The satisfaction constraints become:

$$\forall \Delta = \{T \rightarrow S\}, \forall k \in [1, \min(d^S, d^T)], \forall (i^T, i^S) \in \Delta :$$

$$\delta_k^\Delta \in \{0, 1\}, \sum_{\ell=1}^{\min(d^S, d^T)} \delta_k^\Delta = 1$$

$$\Theta_k^T(i^T) - \Theta_k^S(i^S) \geq -N_{\infty} \left(\sum_{\ell=1}^{\ell=k-1} \delta_\ell^\Delta \right) \cdot (\vec{n} + 1) + \delta_k^\Delta$$

Figure 1: Convex space of all legal schedules.

For a more in-depth description, the reader should refer to previous work [19, 17].

2.3 The Need for Invertible Schedules

In theory, the α portion of any schedule can be any legal point in the Farkas cone generated by applying Farkas’ lemma to the previous convex polyhedron. When α is not invertible, it is always possible to complete it into a full-rank schedule to iterate over all the points in the domain. This completion can be done at code generation time and consists in adding innermost parallel loops to each statement, with a heuristic for fusion [2]. Although this approach does not reduce the number of parallel dimension, it may degrade the parallelism granularity. Also, it does not exploit degrees of freedom in the program to improve locality, contiguity of memory accesses or vectorization. The problem is that singular schedules give the impression a loop dimension is parallel with the caveat that it may only contain a single point!

Consider the example of a single statement $S(i, j, k)$, suppose the objective function is to maximize the 2 outermost degrees of parallelism; the returned schedule / parallelism markers may be $(i, j, k)/(\text{doall, doall, seq})$. After completion, the schedule will really be $(i, i, j, k)/(\text{doall, doall, seq})$, which is exactly the same as $(\text{doall, seq, doall})$. In other words, a scheduler may wrongly think it has found 2 outermost levels of parallelism when it may have missed the $(k - i, j + i, i + j + k)/(\text{doall, doall, seq})$ solution. R-Stream uses the multi-dimensional formulation to iteratively search for invertible schedules. At each step, it computes full Θ schedules. These schedules may not be invertible as a result of a single resolution of the ILP, so we incrementally add linear independence constraints while still searching for a full Θ schedule. Since a singular schedule can always be completed at the innermost level, this approach will always succeed if it is performed top-down. Linear independence constraints are added using the expression of orthogonal subspaces [6] with additional enhancements. In particular, we also model loop reversals and their combinations unlike previous work [6, 17].

The contiguity constraints that we detail in Section 3.1 require a multi-dimensional formulation and the search of full
metric in our ILP. It is based on the realization that in the
initial and temporal. The idea is then to include this additional
information, for reference
for some matrix
functions at each step. The following search strategies are
used to obtain high performance. Such hardware features include hardware prefetch streams, simd and vector operations, and coalescing hard-
ware in GPUs.

3. Contiguity
We are interested in a characterization of the linear part of
an r-dimensional access function F to a memory reference
. For the remainder of this subsection, F represents the linear part of the memory reference. We define the notion of contiguity exhibited by a schedule relative to a memory reference as follows.

3.1 Innermost Reuse Along a Memory Dimension

Definition Let F be a memory reference with r rows ac-
cessed by a statement S and α an invertible affine scheduling function for S. We say α exhibits contiguity along memory dimension r and along some (unspecified) schedule dimension, for reference F iff:
for some matrix M and some tuple \((m_{r,1}, \ldots, m_{r,l})\) where \(\text{card}(i \mid m_{r,i} \neq 0) \leq 1\).

If additionally, \(\text{card}(i \mid m_{r,i} \neq 0) = 0\), the reuse is both spatial and temporal. The idea is then to include this additional metric in our ILP. It is based on the realization that in the transformed program, the last column of \(F \cdot \alpha^{-1}\) represents the innermost dimension of the array access after code generation [2]. In the remainder of this paper, given a matrix \(U\), we use the notation \(U_{:k}\) for the sub-matrix obtained by removing row \(k\). We suppose the number of loops enclosing statement \(S\) is \(d\). In this context, the invertible affine schedule \(\alpha\) has \(d\) rows. We are interested in a characterization of \(\alpha_\tau\).

Theorem 3.1. Let \(\alpha\) be an invertible affine schedule, \(\alpha\) has contiguity along some memory dimension \(k \leq r\) and along schedule dimension \(d\) on \(F\) iff \(Ker \ \alpha_\tau \subset Ker \ F_T\).

Proof. If: Let \(\alpha = \begin{bmatrix} \alpha_\tau \\ \tau \end{bmatrix}\) and \(\alpha^{-1} = \begin{bmatrix} T & t \end{bmatrix}\). Since \(\alpha \cdot \alpha^{-1} = I\), we have \(\alpha_\tau \cdot t = 0\) (i.e. \(t \in Ker \ \alpha_\tau\)). If \(\alpha_\tau \cdot t = 0\) (i.e. \(t \in Ker \ \alpha_\tau\)). If 4Suppose a statement accesses \(A[2 \cdot i + 3 \cdot j - N + 1][k + 2]\) of memory dimension 2, where \(N\) is a constant global pa-

\[F \cdot \alpha^{-1} = \begin{bmatrix} M_1 \\ M_2 \end{bmatrix}\] for

some \(M_1, M_2\) and \(m_{k,d}\).

Only if: Let \(\alpha\) be an invertible schedule that exhibits contiguity for \(F\) along memory dimension \(k \leq r\). Let \(\alpha^{-1} = \begin{bmatrix} T & t \end{bmatrix}\). From \(\alpha \cdot \alpha^{-1} = I\), we get \(\alpha_\tau\). From the definition of contiguity, we get \(F_T \cdot t = 0\). These imply \(\text{Im} t \subseteq Ker \ \alpha_\tau\) and \(\text{Im} t \subseteq Ker \ F_T\). Furthermore, since \(\alpha\) is of full rank, \(\dim(Ker \ \alpha_\tau) = 1\). Thus \(\text{Im} t = Ker \ \alpha_\tau\) and \(Ker \ \alpha_\tau \subseteq Ker \ F_T\).

Corollary 3.1. Let \(\alpha\) be an invertible affine schedule. \(\alpha\) exhibits contiguity for \(F\) along memory dimension \(k \leq r\) and schedule dimension \(d\) iff \(\text{Im} F_T \subseteq \text{Im} \alpha_\tau\).

The proof is trivial: \(Ker A \subseteq Ker B \Leftrightarrow \text{Im} B \subseteq \text{Im} A\).

A simpler version of this characterization of contiguity had already been discussed by Bastoul [3] in the case of the innermost memory dimension. We go a step further by generalizing it to any memory dimension and by integrating this characterization in our affine scheduler. The previous demonstration generalizes to any row of \(\alpha\) and reuse across any schedule dimension \(d' < d\) is obtained in the same way as for \(d\).

3.1.2 Simplified Objective Function
For the purpose of readability of this paper, we remove discussions on the benefit of loop fusion/distribution. Still the search space contains all the legal fusion/distribution structures but we do not use them in the objective function.

The inclusion in our integer linear programming problem is done by constructing the following objective function which trades off parallelism for innermost contiguity on the innermost memory dimension. Throughout the formulas of this paper, we use the letter \(d_{\tau}\) to denote the GDG. For each statement in the program:

- \(w_k\) is the benefit of dimension \(k\) of \(\alpha_k\) executing in parallel,
- \(\Delta_k\) is a boolean variable determining whether dimension \(k\) of \(\alpha_k\) has doall semantics (\(\Delta_k = 1\) iff \(k\) is run in parallel),

\[
\max \sum_{i \in \mathcal{G} \cap [1,d]} \sum_{j \in [1,d]} w_{ij} \Delta_{ij} + \text{Benefit}_{\text{cont}}
\]

Linking the \(\Delta_k\) to the dependence satisfaction variables using the Forkas lemma is an interesting topic [14]. The se-
lection of the costs for the various \(w_k\) is also important. Usually, the coarser the parallelism, the higher the value. We do not detail these points further in this paper.

3.1.3 Constraints for a Single Reference
In this section, we focus on constraints for a single statement \(S\) of dimension \(d\) accessing a memory reference \(R\) with access function \(F\). The coefficients of the matrix \(F\) are known; we are searching for the coefficients of \(\alpha\). We de-
scribe contiguity along the innermost schedule dimension \(d\) of \(S\) and along the innermost array subscript \(r\). For each tuple \(F, d, r\), we create a contiguity decision variable \(\alpha_{r,d}\) to encode whether contiguity is achieved along memory dimension \(r\) and schedule dimension \(d\). \(\alpha_{r,d}\) denotes the
schedule computed ‘so far’, while α denotes the total schedule out of which some of the first rows are fixed. α denotes α stripped of its last row d.

Linking the benefits of contiguity into the formulation is done using Corollary 3.1. This is not standard practice in polyhedral schedulers so we give additional details on how to proceed. Note that in general the relationship Im F ⊆ Im α is not linear so we can only bias the search towards the desired space.

We start by pruning the following trivial cases:

1. if d = 1, contiguity is realized iff the access does not have a component along d on another row than the contiguity row.
2. if Im F_r ⊆ Im α, contiguity is already achieved.
3. if n = dim (F_r ∩ α) − dim (α) is greater than the number of remaining dimensions to schedule, contiguity is trivially preserved.

The remaining cases are as follows.

Case 1: if n = dim (F_r ∩ α) − dim (α) is equal to the number of dimensions remaining to schedule, the condition becomes Im F_r = Im α which can be written as a set of linear constraints.

This effect, we compute a basis of \(F_r \).

Without loss of generality, we also denote this basis by \(F_r \). Let μ denote the line of α currently computed. Applying Corollary 3.1 on α, we obtain the constraints:

where \(c^F_{r,d} \) are well-chosen cost coefficients. These coefficients depend on properties of memory accesses (latency, bandwidth, volume of data) and whether we give more precedence to parallelism, contiguity or other constraints. A thorough investigation of the space of those coefficients is a very interesting research topic.

The reader may note that our constraints precisely pinpoint the arrays having innermost contiguous accesses\(^5\). Note that it is straightforward to plug in an upper bound on the number of non-contiguous accesses and minimize this bound thus encompassing an existing formulation on memory streaming prefetches [5].

\(^5\)the crucial objective as mentioned at the beginning of this section.

Figure 2: Contiguity Optimization

This is a good point to introduce two examples to illustrate contiguity. To better understand individual contributions, we completely disable the search for parallelization, permutability and fusion in this first example. The ILP objectives we use are, in their order of importance (1) maximize the contiguity metric, (2) minimize the absolute value of schedule coefficients and (3) bias coefficients towards positive coefficients whenever possible. In particular, we only try to optimize contiguity along the innermost level of schedule and the innermost level of memory. Figure 2 shows the original kernels we consider on the left and the result of optimizing communications on the right.

The top kernel illustrates the optimization of a single array reference. The schedule found is \((j, \ldots, i + k, \ldots)\) and the access to A is contiguous along k. We additionally experiment with forcing all coefficients to be positive. In that case, the returned schedule is \((j, i, k)\) and the transformed access function is \(A[j-k][k]\). This is an example where restricting schedules to the positive quadrant misses contiguity [6, 17].

The bottom kernel illustrates the tendency for the scheduler to fission loops in the absence of any fusion optimization objective. The schedule found is \((i, k, j)\) for the first statement and \((k, i, j)\) for the second.

3.2 Vectorization

With the availability of contiguity constraints, vectorization can easily be encoded and optimized. The high-level scheduling constraints and properties are the same except for memory alignment.

\[\text{for } (i=1; i<\text{M}; i++) \{\text{for } (j=1; j<\text{N}; j++) \{\text{for } (k=1; k<\text{L}; k++) \{A[i-\text{k}][j-\text{k}][k+1];\text{}}\text{B}[\text{k}][i][j];\text{}}\text{for } (j=1; j<\text{N}; j++) \{\text{for } (k=1; k<\text{L}; k++) \{\text{B}[\text{k}][i][j];\text{}}\text{for } (j=1; j<\text{N}; j++) \{\text{for } (k=1; k<\text{L}; k++) \{\text{B}[\text{k}][i][j];\text{}}\text{}}\text{}}\]
3.2.1 Vectorization Constraints

We already mentioned that the proof of Section 3.1.1 holds for any schedule dimension; the constraints are not difficult to derive. When transposed to vectorization, this simple generalization allows to search for multi-level vectorization as follows.

First we introduce for each statement \(S \) and each loop dimension \(1 \leq l \leq d^S \) a decision variable to encode whether or not it is vectorizable: \(\Sigma^S_l \). If a statement is vectorizable along \(k \) then it must also be parallel:

\[
0 \leq \Sigma^S_l \leq \Delta^S_l
\]

We tie the \(\Delta \) variables together using the \(\beta \) coefficients: if 2 statements are nested under the same outer \(l \) loops, their \(\Delta_l \).,..,\(\Delta_l \) will be equal. As a consequence, the \(\Sigma^S_l \) for statements in a same loop will also be equal.

The next step is to link together the contiguity constraints of all references within a statement. This is done schedule dimension by schedule dimension. For each tuple \((S, 1 \leq l \leq d^S, F \in S, r = \dim(F)) \), we write:

\[
0 \leq \Sigma^S_l \leq c^F_{l,r}
\]

Integrating vectorization along any loop level in our cost function is straightforward:

\[
\sum_{S \in G, l \in [1, d^S]} \sigma^S_l \Sigma^S_l
\]

where again the \(\sigma^S_l \) are well-chosen costs to model which schedule dimensions of which statements are the most important to vectorize.

3.2.2 Discussion

We now replace the contiguity portion of the ILP objective by the vectorization benefit. The reader may verify that the second example of Figure 2 also exhibits innermost parallelism in addition to contiguity. Therefore both its statements are immediately simd-izable and the schedule is the same.

Current limitations of this formulation are twofold. First, the vectorization constraints allow the extraction of parallelism and contiguity along a single schedule dimension at a time, per statement. This dimension may still be different for each statement. This combines well with additional parallelism and locality extraction but not yet with a second level of vectorization. Secondly, the stride along the innermost dimension is not guaranteed to be minimal and packing/unpacking instructions may be necessary for simplization even if a better solution would exist. Last, alignment constraints do not fold directly in this formulation, particularly when the transformed access on the innermost memory dimension is a function of multiple induction variables. This is the case in Figure 3 where the alignment changes at every single iteration of the \(i \) and \(j \) loop. Recent work by Henretty et al. [11] can be applied to change the layout and is applicable in our case. Addressing these issues will be the subject of future research.

3.3 Joint Vectorization And Data Layout

In this section, we take advantage of the data layout transformation phase in R-Stream to devise even more powerful scheduling algorithms. We show how to add constraints that allow contiguity along any memory dimension, and not just the innermost. This makes the problem less constrained and the scheduler more flexible thanks to an additional degree of freedom. The output of our optimization problem is a schedule with parallelism indicators augmented with a set of data layout permutations that should be applied to realize the full vectorization. This generalization requires the introduction of new variables:

- for each tuple determined by a statement \(S \), an array \(A \) accessed by that statement and an admissible schedule dimension \(l \in [1, d^S] \) of reuse, we insert a new decision variable \(p_{l,r}^{S,A} \). It encodes whether all the references to the given array within the statement are contiguous along schedule dimension \(l \) and some unspecified memory dimension,

- for each tuple determined by a statement \(S \), an array \(A \) accessed by that statement, an admissible schedule dimension \(l \in [1, d^S] \) of reuse and and admissible memory dimension of reuse \(r \), we insert a new decision variable \(q_{l,r}^{S,A} \). It encodes whether all references to \(A \) within the statement are contiguous along a fixed schedule dimension and a fixed memory dimension.

These clearly represent a lot of variables and special care must be taken with respect to the scalability of the ILP. On the other hand these new variables are auxiliary variables that do not appear in the objective function. We discuss scalability issues in the next section. The constraints are not difficult to write but they involve potentially many variables. First the simd decision variables \(\Sigma^S_l \) are linked to the \(p_{l}^{S,A} \), then the \(q_{l}^{S,A} \) are linked to the \(p_{l}^{S,A} \).
\[\forall S \in G, \forall l \in [1, d^S] \quad K^S_A = \frac{1}{d^S} \sum_{l=1}^{d^S} p_{l,A}^{S,A} \]

\[\forall S \in G, \forall l \in [1, d^S], \forall A \in S \quad p_{l,A}^{S,A} \leq \sum_{r=1}^{d_{\text{dim}}^{S,A}} q_{l,r}^{S,A} \]

\[\forall S \in G, \forall l \in [1, d^S], \forall A \in S, \forall F \text{ accesses } A \quad K^S_A \cdot q_{l,r}^{S,A} \leq \sum_{F \text{ acc. } A} c_{l,F}^{F,A} \]

\[\forall S \in G, \forall l \in [1, d^S] \quad \sum_{l=1}^{d^S} p_{l,A}^{S,A} \leq \sum_{l=1}^{d^S} q_{l,r}^{S,A} \]

Figure 4 shows an example of this additional benefit of our formulation. In this case, we only look for vectorization at the innermost schedule level. We allow contiguity along any array dimension to illustrate data layout permutation constraints. We do not show the original kernel and leave it as an exercise for the reader to derive it from the transformed variants.

The code on the right is obtained after turning on data layout permutations in our formulation. Now contiguity is allowed along any memory dimension as long as it is the same dimension in all the accesses to the same array within the statement. In this case the schedules computed are \((j,k,i)\) and \((j,k,i)\) respectively.

The code on the right is obtained after turning on data layout permutations in our formulation. Now contiguity is allowed along any memory dimension as long as it is the same dimension in all the accesses to the same array within the statement. In this case the schedules computed are \((j,k,i)\) and \((j,k,i)\) respectively.

The code on the right is obtained after turning on data layout permutations in our formulation. Now contiguity is allowed along any memory dimension as long as it is the same dimension in all the accesses to the same array within the statement. In this case the schedules computed are \((j,k,i)\) and \((j,k,i)\) respectively.

The benefits of this formulation are clear: additional opportunities for vectorization appear that are not available without this new degree of freedom.

```
for (i=2; i<=M+1; i++) {
    for (j=2; j<=N+1; j++) {
        doall (k=1; k<=L; k++) {
            \(A[i][j][k]+B[i][j][k+1]=c[i][j][k]\)
        }
    }
}
```

```
for (i=2; i<=M+1; i++) {
    for (j=2; j<=N+1; j++) {
        doall (k=1; k<=L; j++) {
            \(A[i][j][k]+B[k][i][j]+B[k][i][j-1]=c[k][i][j]\)
        }
    }
}
```

```
for (i=2; i<=M+1; i++) {
    for (j=2; j<=N+1; j++) {
        doall (k=1; k<=L; k++) {
            \(B[k][i][j]+B[k][i][j-1]=c[k][i][j]\)
        }
    }
}
```

```
for (i=2; i<=M+1; i++) {
    for (j=2; j<=N+1; j++) {
        doall (k=1; k<=L; k++) {
            \(B[k][i][j]+B[k][i][j-1]=c[k][i][j]\)
        }
    }
}
```

4. SCALABILITY EXPERIMENTS

The experiments we conduct focus on statistical results and on the scalability of various scheduling strategies based on our formulation. In Figure 5 we describe the amount of contiguity, vectorization and the compilation times incurred with different strategies.

Default: the base strategy that optimizes in this order for (1) maximal vectorization along the innermost schedule and memory dimensions, (2) maximal outermost parallelism, (3) maximal contiguity for independent arrays, (4) minimal absolute value of schedule coefficient and (5) bias coefficients towards positive values.

NoObj: is the base strategy with no objective function. It just picks an integer point in the search space.

Identity additionally forces the identity schedule for all statements and uses the cost function of the Default strategy. Beta coefficients are still free so it will only look for the best fusion/distribution structure that maximizes the objective.

Permutations is a little less constrained than Identity; it forces the schedules to be combinations of loop interchanges and loop reversals. In this particular case, a single scheduling pass can be performed and we avoid the cost of incrementally searching for invertible schedules.

OuterSimd allows the Default strategy to look for the best outermost simd-ization.

Layout allows the Default strategy to look for the simd-ization modulo data layout permutations (independently on each statement).

OuterSimdLayout is the conjunction of OuterSimd and Layout.

AS: the coarse-grained multi-dimensional Affine Scheduling strategy implemented in R-Stream trades off parallelism and locality. It does not contain the formulations of this paper and is shown for reference.

The strategies NoObj, Identity, Permutations are internally used as debugging and as the base cases to incrementally check the overhead of our formulation. Our testbed consist in close to 400 kernel benchmarks whose complexity vary from the simple examples presented in this paper to bigger kernels such as computation intensive radar codes with a few dozen statements. To stress test the formulation, we schedule the whole kernel and do not limit the optimization to well-chosen subgroups of statements (i.e. statements that would belong to the same tile). Given the complexity of the constraint sets we generate, we implement various independent checks to ensure (1) the schedules and their parallelism are correct with respect to the input dependences, (2) the contiguity decision variables are true if and only if the accesses after code generation are indeed contiguous and (3) simd variables are true if and only if the statement is simd-izable (modulo data layout permutations when applicable).

We run the following steps in this order. First we parse the input program and convert it to a GDG, this has negligible overhead. Then we perform exact dependence analysis, scheduling using our multi-dimensional formulation with the different objectives described and, lastly, polyhedral scanning. We report the total time spent in each phase for the whole set of 400 kernel benchmarks and provide additional statistical information to quantify the quality and properties of the schedules we find. R-Stream is run on a Xeon E5520 and we use version 3.1 of the Gurobi ILP solver. The timeout in the solver is set to 15 seconds. For the sake of il-

Figure 4: Joint Vectorization and Data Layout

At this point, the expression of data layout permutations is at the granularity of a statement and the simd-ization we find is likely to require the insertion of layout transformation between statements. The kernel on the right is an example of this property: \(A\) is written in the first statement and it is read in the second. Because of these dependences, it is not possible to have a single layout transformation before the first statement. It is easy to extend our formulation to increase the granularity of the layout to a set of statements; for instance to all the statements that would end up in the same tile after one pass of coarse-grained scheduling. The prospects for future extensions and experiments are exciting.
lustration of the current performance of our unoptimized for-
mulation we report those timeouts. It can safely be assumed
that our formulation is currently less scalable than previous
techniques by virtue of a higher number of integer variables
and constraints. Scalability will be an important subject of
future work where we will also report additional statistical
data on the composition of our kernel benchmarks.

The table in Figure 5 displays the aggregated results of
running our set of 400 kernel benchmarks. The first col-
umn returns the total number of loops that exhibit contigu-
ous memory accesses. The first 4 rows in the table only
track contiguity along the innermost schedule and memory
dimensions. The number of contiguity dimensions gradu-
al augment as we relax the constraints on the admissible
schedules. In the 6th, 7th and 8th row, the scheduler allows
contiguity along any schedule dimensions, any memory di-

cision and any schedule/memory dimension respectively.
Comparing rows for OuterSimd and Layout show there are
more opportunities for contiguity in our examples by vary-
ing the schedule dimension than the memory dimensions.

The analysis of the simd columns is interesting. The num-
bers unsurprisingly augment as we relax the strategies but
the numbers suddenly drop in the OuterSimdLayout row.
This actually reflects a drastic change in the “quality” of
the vectorization found. There are quite less simd dimen-
sions found but their depth is also much smaller: vector-
ization opportunities are found at a substantially coarser
grain. It is interesting to note that considering permutations
and reversals only seems to offer an interesting tradeoff
between compilation time and quality of the vectorization.
Lastly, the coarse-grained affine scheduler is rather scalable
and succeeds on all the kernels. This hints at a future strat-
egy where we will (1) use AS to schedule for coarse-grained
parallelism and locality, (2) perform tiling and (3) use our
new scheduler for fine-grained and simd parallelism and (4)
adjust with potential data layout transformations.

5. RELATED WORK

Vectorization and simd-ization are important topics at-
ached by industrial compilers [4, 7, 21]. Still the problem of
finding good loop transformations to maximize the amount
of simd-izable loops does not have a good general solution to
this date. Previous work has tackled the efficient generation
of simd instructions for already vectorizable loops and has
focused on important low level issues such as packing and
unpacking data, adapting to various kind of misalignments
and devising cost models to decide when a loop should be
vectorized or not. Our work is complementary and attacks
the difficult problem of loop nest transformations to find
proper preconditions that enables further optimizations to
proceed. Since our solution finds multi-level vectoriza-
tion, it is also a good solution for GPUs which “should be
viewed as multi-threaded multi-core vector units” [20]. Our
work bridges the gap between the input language and the
required performance: it is less critical to program using
vector intrinsics or CUDA if a good vectorizer is available.
Another interesting contribution shows the benefits of gen-
erating outer-loop vectorization and emphasizes on the fact
that outer-loop vectorization provides new reuse opportu-
nities, including efficient handling of alignment [16]. Our
work finds these opportunities for outer loop vectorization
even when they are deeply hidden in the loop structures and
require a complex mix of affine transformations and data
layout permutations.

Recent work showed the importance of vectorizing on a
high-level representation of the program [12] but in the spe-
cial case of streaming programing. Our solution also deals
with a high-level representation of the program but is not
limited to programs expressible in a streaming paradigm.
Since the authors mention that “traditional vectorization
techniques can also be a viable approach to perform simd-
ization on streaming applications,” our work may also gen-
eralize theirs.

Within the polyhedral framework, it is known that use-
ful high-level properties of programs can be optimized such
as maximal fine-grained parallelism using Feautrier’s algo-
rithm [8], maximal coarse-grained parallelism of a fixed loop
nest using Lim and Lam’s algorithm [15] or maximal paral-
lelism given a (maximal) fusion/distribution structure using
Bondhugula et al.’s algorithm [6]. More recent work ex-
plored ways to integrate in a single formulation constraints
for hardware prefetch stream buffer utilization, locality and
parallelism [5]. Recently, a new characterization of the ex-
act convex space of all legal multi-dimensional schedules has
been devised [19] and schedulers are starting to appear that
use this formulation [17], though not as powerful as the R-
Stream implementation described here. Our solution ex-
plots this structured space and extends on previous work
by enabling joint optimization of multiple search criteria.
These criteria are: parallelism, locality, vectorization and
data layout permutations. Our formulation unifies previous
work and additionally enables vectorization and data lay-
out transformations in a single complete formulation. Our
work is also related to a recent contribution by Trifunovic et
al. [18]. They devise a polyhedral loop scheduling strategy
and a cost model to drive auto-vectorization. Their schedul-
ing strategy only looks for loop permutations and is weaker

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Num contiguous</th>
<th>Num simd</th>
<th>Simd depth</th>
<th>DepAnal (s)</th>
<th>Scheduling (s)</th>
<th>CodeGen(s)</th>
<th>Num T/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoObj</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16.5</td>
<td>190</td>
<td>14.2</td>
<td>2</td>
</tr>
<tr>
<td>Identity</td>
<td>179</td>
<td>23</td>
<td>27</td>
<td>16.7</td>
<td>290</td>
<td>16.7</td>
<td>2</td>
</tr>
<tr>
<td>Permutations</td>
<td>763</td>
<td>75</td>
<td>119</td>
<td>17.2</td>
<td>78</td>
<td>17.2</td>
<td>2</td>
</tr>
<tr>
<td>Default</td>
<td>1637</td>
<td>386</td>
<td>586</td>
<td>16.5</td>
<td>467</td>
<td>16.6</td>
<td>2</td>
</tr>
<tr>
<td>OuterSimd</td>
<td>2891</td>
<td>348</td>
<td>418</td>
<td>16.5</td>
<td>575</td>
<td>16.5</td>
<td>2</td>
</tr>
<tr>
<td>Layout</td>
<td>2107</td>
<td>483</td>
<td>772</td>
<td>16.6</td>
<td>466</td>
<td>16.6</td>
<td>2</td>
</tr>
<tr>
<td>OuterSimd + Layout</td>
<td>6999</td>
<td>368</td>
<td>244</td>
<td>15.8</td>
<td>796</td>
<td>15.8</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17.1</td>
<td>90</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 5: Statistical Aggregate Performance of the Scheduler on 400 Examples
than the Permutations strategy which also considers loop reversals. Our work introduces a much more general scheduling formulation where arbitrary affine transformations and fusion/distributions are found. Our work formulation also includes data layout transformations. On the other hand, our work does not detail our cost model, this is left for future work.

6. CONCLUSION AND FUTURE WORK

In this paper, we focused on thoroughly describing a new formulation implemented in the R-Stream compiler. We present detailed performance evaluation using advanced multi-level scheduling strategies in a subsequent paper. We will be interested in exploring the transformation space across benchmarks and across architectures, on both cache-based and explicitly managed memory architectures.

The opportunities opened by our algorithm are significant. In particular, we showed that the formulation of contiguity and vectorization is inherently multidimensional. Therefore, any search procedure that is not based on the convex space of all legal schedules will miss vectorization opportunities. It will be interesting to compare heuristics in advanced compilers and determine how much vectorization is lost.

A very promising aspect of these joint scheduling and data layout transformations is they fit naturally in the current mapping flow of R-Stream. At a high-level glance, R-Stream first performs coarse-grained scheduling and tiling. Tile sizes are selected such that the footprint of the accessed arrays fit into a given memory (scratchpad, cache, ...). Then R-Stream performs fine-grained scheduling to improve the contiguity and SIMD properties of the code. At this point, R-Stream introduces communications and temporary arrays to store data closer to the processing elements. This feature is available for cache-less memory architecture and as an option on cache based machines by using virtual scratchpads. This is where R-Stream performs data layout transformations that could be very useful for memory alignment [11].

Iterative optimization and machine learning based on our formulation are very likely to have a drastic impact on the generated code. In this context it will be interesting to turn optimizations on or off and explore the values of the different cost coefficients we mentioned.

Lastly, our formulation has interesting implications on power consumption since contiguity and locality are key optimizations to improve the behavior of memory traffic.

7. ACKNOWLEDGMENTS

We are grateful Allen Leung for his successful linking of Bastoul’s characterization to the constraints (1)-(3) in the special case when \(k = l \) on a single dimensional formulation. We also thank Albert Hartono for preliminary work on reuse constraints on a single dimensional formulation.

8. REFERENCES

(POPL'11), Austin, TX, Jan. 2011.

