Improving PolyBench: Heroes Wanted

Sanjay Rajopadhye
Colorado State University
Easy fixes & low hanging fruit

- Bugs:
 - ADI
 - A'TAX (already fixed but not released)
 - ...

- No test inputs/outputs provided

- Parameters are static (\#define) so compilers can optimize away
 - even “dynamic” parameters use \#define
 - must be passed as arguments to functions
Some benchmarks are really microkernels
- Vector add, 1D Jacobi stencil, …

Some are terribly naïve
- in memory – \texttt{fdtd_apml} is single assignment
- in work and memory – \texttt{dynprog} and \texttt{reg_detect} are $O(N^4)$ with $O(N^3)$ memory
 - can be done in $O(N^3)$ work with $O(N^2)$ memory.
- What is the goal? Do we expect compilers to reduce space/work complexity? If so, mark them as “challenges”
Not very readable – heavy use of C macros

Motivation – need different “kinds of benchmarks” – e.g., linearized vs truly multidimensional arrays

Cleaner way: generate with a script – don’t use C macro processor as a scripting language.

Relatively few truly difficult codes
Higher Fruit (complete apps)

- HMMER (Hidden Markov Model – Viterbi)
 - hmmer.janelia.org
- Back-propagation NN training
- UAV tracking using POMDP
- Nupack (nucleic acid structure)
 - www.nupack.org
- Mfold/Unafold (RNA secondary structure)
 - mfold.rna.albany.edu
- Smith Waterman/BLAST/…
- FDTD apps
- …
Q: What’s wrong with this?

Overall Results: The Same One Produced By Others
Serious Benchmarking

Q: What’s wrong with this?

Answer

- No absolute performance data
- No information about GLFOP/sec attained
- No comparison with the best possible (by hand)
Towards a solution

- Need to know best achievable performance
 - on a given target
 - for a given set of size parameters
 - for all the benchmarks
- Separate compiler optimizations from “algorithmic innovations”
 - Dynamic programming
 - Floyd-Warshall
- Calls for heroes
Cédric’s heroes

Outstanding Optimization Heroes

- John Carmack
 Game developer, id Software
 innovations in 3D Graphics, fast inverse square root

- Kazushige Goto
 Engineer, Intel
 hand-tuned programs for supercomputers “Goto BLAS”

- Vasily Volkov
 PhD student, Berkeley
 3x faster FFT than nVidia’s proprietary implementation
Students are our heroes

- Set up a competition
- Like DARPA’s HPC Challenge benchmarks

- Reward successful students with
 - Fame
 - Travel to next IMPACT
 - Riches – ipad, laptop, …