
January 21, 2013 1 / 43

On Demand Parametric Array Dataflow Analysis

Sven Verdoolaege Hristo Nikolov Todor Stefanov

Leiden Institute for Advanced Computer Science
École Normale Supérieure and INRIA

January 21, 2013

January 21, 2013 2 / 43

Outline
1 Motivation

General Motivation
Our Motivation

2 Array Dataflow Analysis
Standard
Fuzzy
On Demand Parametric

3 Dynamic Conditions
4 Parametrization

Overview
Representation
Introduction
Additional Constraints

5 Related Work
6 Experimental Results
7 Conclusion

Motivation January 21, 2013 3 / 43

Outline
1 Motivation

General Motivation
Our Motivation

2 Array Dataflow Analysis
Standard
Fuzzy
On Demand Parametric

3 Dynamic Conditions
4 Parametrization

Overview
Representation
Introduction
Additional Constraints

5 Related Work
6 Experimental Results
7 Conclusion

Motivation General Motivation January 21, 2013 4 / 43

Motivation

Dataflow analysis determines for read access in a statement
instance, the statement instance that wrote the value being read
Many uses in polyhedral analysis/compilation

I array expansion
I scheduling
I equivalence checking
I optimizing computation/communication overlap in MPI programs
I derivation of process networks
I . . .

Standard dataflow analysis (Feautrier) requires static affine input
programs

Extensions are needed for programs with dynamic/non-affine
constructs

Motivation General Motivation January 21, 2013 4 / 43

Motivation

Dataflow analysis determines for read access in a statement
instance, the statement instance that wrote the value being read
Many uses in polyhedral analysis/compilation

I array expansion
I scheduling
I equivalence checking
I optimizing computation/communication overlap in MPI programs
I derivation of process networks
I . . .

Standard dataflow analysis (Feautrier) requires static affine input
programs

Extensions are needed for programs with dynamic/non-affine
constructs

Motivation Our Motivation January 21, 2013 5 / 43

Our Motivation: Derivation of Process Networks

Main purpose: extract task level parallelism from dataflow graph

statement → process
flow dependence → communication channel

⇒ requires dataflow analysis

Processes are mapped to parallel hardware (e.g., FPGA)

Example:

for (i = 0; i < n; ++i) {
a = f();

g(a);

}

f

g

Motivation Our Motivation January 21, 2013 5 / 43

Our Motivation: Derivation of Process Networks

Main purpose: extract task level parallelism from dataflow graph

statement → process
flow dependence → communication channel

⇒ requires dataflow analysis

Processes are mapped to parallel hardware (e.g., FPGA)

Example:

for (i = 0; i < n; ++i) {
a = f();

g(a);

}

f

g

Motivation Our Motivation January 21, 2013 6 / 43

Dynamic Process Networks

int state = 0;
for (i = 0; i <= 10; i++) {
sample = radioFrontend();

if (state == 0) {
state = detect(sample);

} else {
state = decode(sample, &value0);

value1 = processSample0(value0);

processSample1(value1);

}

}

P_1
state=0

P_3
if()

state

P_2
radioFrontEnd()

P_4
detect()

sample

P_5
decode()

sampleenableenable

P_6
processSample0

enable

P_7
processSample1)

enable

iteration stateiterationstate

sample

sample

additional control channels
determine operation of data channels
dataflow analysis needs to remain exact,
but may depend on run-time information

Motivation Our Motivation January 21, 2013 6 / 43

Dynamic Process Networks

int state = 0;
for (i = 0; i <= 10; i++) {
sample = radioFrontend();

if (state == 0) {
state = detect(sample);

} else {
state = decode(sample, &value0);

value1 = processSample0(value0);

processSample1(value1);

}

}

P_1
state=0

P_3
if()

state

P_2
radioFrontEnd()

P_4
detect()

sample

P_5
decode()

sampleenableenable

P_6
processSample0

enable

P_7
processSample1)

enable

iteration stateiterationstate

sample

sample

additional control channels
determine operation of data channels
dataflow analysis needs to remain exact,
but may depend on run-time information

Motivation Our Motivation January 21, 2013 6 / 43

Dynamic Process Networks

int state = 0;
for (i = 0; i <= 10; i++) {
sample = radioFrontend();

if (state == 0) {
state = detect(sample);

} else {
state = decode(sample, &value0);

value1 = processSample0(value0);

processSample1(value1);

}

}

P_1
state=0

P_3
if()

state

P_2
radioFrontEnd()

P_4
detect()

sample

P_5
decode()

sampleenableenable

P_6
processSample0

enable

P_7
processSample1)

enable

iteration stateiterationstate

sample

sample

additional control channels
determine operation of data channels
dataflow analysis needs to remain exact,
but may depend on run-time information

Array Dataflow Analysis January 21, 2013 7 / 43

Outline
1 Motivation

General Motivation
Our Motivation

2 Array Dataflow Analysis
Standard
Fuzzy
On Demand Parametric

3 Dynamic Conditions
4 Parametrization

Overview
Representation
Introduction
Additional Constraints

5 Related Work
6 Experimental Results
7 Conclusion

Array Dataflow Analysis Standard January 21, 2013 8 / 43

Standard Array Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single reference

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
[N] -> { W[i] -> F[i’,i-i’] : 0 <= i,i’< N and i’<= i }

Last write: lexmax R; # [N] -> { W[i] -> F[i,0] : 0 <= i < N }

In general: impose lexicographical order on shared iterators

Array Dataflow Analysis Standard January 21, 2013 8 / 43

Standard Array Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single reference

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
[N] -> { W[i] -> F[i’,i-i’] : 0 <= i,i’< N and i’<= i }

Last write: lexmax R; # [N] -> { W[i] -> F[i,0] : 0 <= i < N }

In general: impose lexicographical order on shared iterators

Array Dataflow Analysis Standard January 21, 2013 8 / 43

Standard Array Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single reference

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
[N] -> { W[i] -> F[i’,i-i’] : 0 <= i,i’< N and i’<= i }

Last write: lexmax R; # [N] -> { W[i] -> F[i,0] : 0 <= i < N }

In general: impose lexicographical order on shared iterators

Array Dataflow Analysis Standard January 21, 2013 8 / 43

Standard Array Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single reference

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
[N] -> { W[i] -> F[i’,i-i’] : 0 <= i,i’< N and i’<= i }

Last write: lexmax R; # [N] -> { W[i] -> F[i,0] : 0 <= i < N }

In general: impose lexicographical order on shared iterators

Array Dataflow Analysis Standard January 21, 2013 8 / 43

Standard Array Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single reference

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
[N] -> { W[i] -> F[i’,i-i’] : 0 <= i,i’< N and i’<= i }

Last write: lexmax R; # [N] -> { W[i] -> F[i,0] : 0 <= i < N }

In general: impose lexicographical order on shared iterators

Array Dataflow Analysis Standard January 21, 2013 8 / 43

Standard Array Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single reference

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
[N] -> { W[i] -> F[i’,i-i’] : 0 <= i,i’< N and i’<= i }

Last write: lexmax R; # [N] -> { W[i] -> F[i,0] : 0 <= i < N }

In general: impose lexicographical order on shared iterators

Array Dataflow Analysis Standard January 21, 2013 9 / 43

Standard Array Dataflow Analysis
Multiple Potential Sources

Dataflow is typically performed per read access (“sink”) C

Corresponding writes (“potential sources”) P are considered in turn

Map to all potential source iterations: Dmem
C ,P = (A−1

P ◦ AC) ∩ BP
C

(“memory based dependences”; BP
C : P executed before C)

Source may already be known for some sink iterations
⇒ compute partial lexicographical maximum

(U′,D) = lexmax
U

M

U: sink iterations for which no source has been found
M: part of memory based dependences for particular potential source
U′ = U \ dom M
M′ = lexmax(M ∩ (U → ran M))

Note: here, dependence relations map sink iterations to source iterations

Array Dataflow Analysis Fuzzy January 21, 2013 10 / 43

Fuzzy Array Dataflow Analysis

Introduces parameters for each lexmax involving dynamic behavior

Parameters represent dynamic solution of lexmax operation

Derives properties on parameters after dataflow analysis
(using resolution)

Parametric result is exact

Parameters can be projected out to obtain approximate but static
dataflow

Main problem for deriving process networks:
Introduces too many parameters
⇒ too many control channels

Array Dataflow Analysis Fuzzy January 21, 2013 10 / 43

Fuzzy Array Dataflow Analysis

Introduces parameters for each lexmax involving dynamic behavior

Parameters represent dynamic solution of lexmax operation

Derives properties on parameters after dataflow analysis
(using resolution)

Parametric result is exact

Parameters can be projected out to obtain approximate but static
dataflow

Main problem for deriving process networks:
Introduces too many parameters
⇒ too many control channels

Array Dataflow Analysis Fuzzy January 21, 2013 10 / 43

Fuzzy Array Dataflow Analysis

Introduces parameters for each lexmax involving dynamic behavior

Parameters represent dynamic solution of lexmax operation

Derives properties on parameters after dataflow analysis
(using resolution)

Parametric result is exact

Parameters can be projected out to obtain approximate but static
dataflow

Main problem for deriving process networks:
Introduces too many parameters
⇒ too many control channels

Array Dataflow Analysis On Demand Parametric January 21, 2013 11 / 43

On Demand Parametric Array Dataflow Analysis

Similar to FADA:

Exact, possibly parametric, dataflow

Introduces parameters to represent dynamic behavior

But:

+ Parameters have a different meaning

+ Effect analyzed before parameters are introduced

+ All computations are performed directly on affine sets and maps

− Currently only supports dynamic conditions

Dynamic Conditions January 21, 2013 12 / 43

Outline
1 Motivation

General Motivation
Our Motivation

2 Array Dataflow Analysis
Standard
Fuzzy
On Demand Parametric

3 Dynamic Conditions
4 Parametrization

Overview
Representation
Introduction
Additional Constraints

5 Related Work
6 Experimental Results
7 Conclusion

Dynamic Conditions January 21, 2013 13 / 43

Representing Generic Dynamic Conditions
while (1) {

sample = radioFrontend();

if (t(state)) {

D: state = detect(sample);

} else { /* ... */ }

}

Dynamic condition (t(state)) represented by filter
Filter access relation(s):
access to (virtual) array representing condition{

D

statement reading from filter array

(i)→ (S0

statement writing to filter array

(i)→ t0

filter array

(i))
}

Filter value relation:
values of filter array elements for which statement is executed{

D(i)→ (1) | i ≥ 0
}

S0: t0 = t(state);

Dynamic Conditions January 21, 2013 13 / 43

Representing Generic Dynamic Conditions
while (1) {

sample = radioFrontend();

if (t(state)) {

D: state = detect(sample);

} else { /* ... */ }

}

Dynamic condition (t(state)) represented by filter
Filter access relation(s):
access to (virtual) array representing condition{

D

statement reading from filter array

(i)→ (S0

statement writing to filter array

(i)→ t0

filter array

(i))
}

Filter value relation:
values of filter array elements for which statement is executed{

D(i)→ (1) | i ≥ 0
}

S0: t0 = t(state);

Dynamic Conditions January 21, 2013 13 / 43

Representing Generic Dynamic Conditions
while (1) {

sample = radioFrontend();

if (t(state)) {

D: state = detect(sample);

} else { /* ... */ }

}

Dynamic condition (t(state)) represented by filter
Filter access relation(s):
access to (virtual) array representing condition{

D

statement reading from filter array

(i)→ (S0

statement writing to filter array

(i)→ t0

filter array

(i))
}

Filter value relation:
values of filter array elements for which statement is executed{

D(i)→ (1) | i ≥ 0
}

S0: t0 = t(state);

Dynamic Conditions January 21, 2013 13 / 43

Representing Generic Dynamic Conditions
while (1) {

sample = radioFrontend();

if (t(state)) {

D: state = detect(sample);

} else { /* ... */ }

}

Dynamic condition (t(state)) represented by filter
Filter access relation(s):
access to (virtual) array representing condition{

D

statement reading from filter array

(i)→ (S0

statement writing to filter array

(i)→ t0

filter array

(i))
}

Filter value relation:
values of filter array elements for which statement is executed{

D(i)→ (1) | i ≥ 0
}

S0: t0 = t(state);

Dynamic Conditions January 21, 2013 13 / 43

Representing Generic Dynamic Conditions
while (1) {

sample = radioFrontend();

if (t(state)) {

D: state = detect(sample);

} else { /* ... */ }

}

Dynamic condition (t(state)) represented by filter
Filter access relation(s):
access to (virtual) array representing condition{

D

statement reading from filter array

(i)→ (S0

statement writing to filter array

(i)→ t0

filter array

(i))
}

Filter value relation:
values of filter array elements for which statement is executed{

D(i)→ (1) | i ≥ 0
}

S0: t0 = t(state);

Dynamic Conditions January 21, 2013 13 / 43

Representing Generic Dynamic Conditions
while (1) {

sample = radioFrontend();

if (t(state)) {

D: state = detect(sample);

} else { /* ... */ }

}

Dynamic condition (t(state)) represented by filter
Filter access relation(s):
access to (virtual) array representing condition{

D

statement reading from filter array

(i)→ (S0

statement writing to filter array

(i)→ t0

filter array

(i))
}

Filter value relation:
values of filter array elements for which statement is executed{

D(i)→ (1) | i ≥ 0
}

S0: t0 = t(state);

Dynamic Conditions January 21, 2013 14 / 43

Representing Locally Static Affine Conditions
N1: n = f();

for (int k = 0; k < 100; ++k) {

M: m = g();

for (int i = 0; i < m; ++i)

for (int j = 0; j < n; ++j)

A: a[j][i] = g();

N2: n = f();

}

Values of m and n not changed inside i and j loops
⇒ locally static affine loop conditions

Filter access relations:{
A(k , i, j)→ (M(k)→ m())

}{
A(0, i, j)→ (N1()→ n())

}
∪

{
A(k , i, j)→ (N2(k − 1)→ n()) | k ≥ 1

}
Filter value relation:
{ A(k , i, j)→ (m, n) | 0 ≤ k ≤ 99 ∧ 0 ≤ i < m ∧ 0 ≤ j < n }

Note: filter access relations exploit (static) dataflow analysis on m and n

Dynamic Conditions January 21, 2013 14 / 43

Representing Locally Static Affine Conditions
N1: n = f();

for (int k = 0; k < 100; ++k) {

M: m = g();

for (int i = 0; i < m; ++i)

for (int j = 0; j < n; ++j)

A: a[j][i] = g();

N2: n = f();

}

Values of m and n not changed inside i and j loops
⇒ locally static affine loop conditions

Filter access relations:{
A(k , i, j)→ (M(k)→ m())

}{
A(0, i, j)→ (N1()→ n())

}
∪

{
A(k , i, j)→ (N2(k − 1)→ n()) | k ≥ 1

}
Filter value relation:
{ A(k , i, j)→ (m, n) | 0 ≤ k ≤ 99 ∧ 0 ≤ i < m ∧ 0 ≤ j < n }

Note: filter access relations exploit (static) dataflow analysis on m and n

Parametrization January 21, 2013 15 / 43

Outline
1 Motivation

General Motivation
Our Motivation

2 Array Dataflow Analysis
Standard
Fuzzy
On Demand Parametric

3 Dynamic Conditions
4 Parametrization

Overview
Representation
Introduction
Additional Constraints

5 Related Work
6 Experimental Results
7 Conclusion

Parametrization Overview January 21, 2013 16 / 43

Overview

Dataflow analysis performed for each read access (sink) separately
Potential sources considered from closest to furthest

I number of shared loop iterators `
I textual order

For each lexmax operation
I is it possible for potential source not to execute when sink is executed?

(based on filters)
I if so, parametrize lexmax problem

Parametrization Representation January 21, 2013 17 / 43

Parametrization
state = 0;

while (1) {

sample = radioFrontend();

if (t(state)) {

D: state = detect(sample);

} else {

C: decode(sample, &state, &value0);

value1 = processSample0(value0);

processSample1(value1);

}

}

Memory based dependences: Dmem
C ,P =

{
S0(i)→ D(i′) | 0 ≤ i′ < i

}
At ` = 1: M = Dmem

C ,P ∩
{
S0(i)→ D(i)

}
= ∅

At ` = 0: M =
{
S0(i)→ D(i′) | 0 ≤ i′ < i

}
Potential source D(i′) may not have executed even if sink S0(i) is executed
⇒ parametrization required

sink C

potential source P

Parametrization Representation January 21, 2013 17 / 43

Parametrization
state = 0;

while (1) {

sample = radioFrontend();

if (t(state)) {

D: state = detect(sample);

} else {

C: decode(sample, &state, &value0);

value1 = processSample0(value0);

processSample1(value1);

}

}

Memory based dependences: Dmem
C ,P =

{
S0(i)→ D(i′) | 0 ≤ i′ < i

}
At ` = 1: M = Dmem

C ,P ∩
{
S0(i)→ D(i)

}
= ∅

At ` = 0: M =
{
S0(i)→ D(i′) | 0 ≤ i′ < i

}
Potential source D(i′) may not have executed even if sink S0(i) is executed
⇒ parametrization required

sink C

potential source P

Parametrization Representation January 21, 2013 17 / 43

Parametrization
state = 0;

while (1) {

sample = radioFrontend();

if (t(state)) {

D: state = detect(sample);

} else {

C: decode(sample, &state, &value0);

value1 = processSample0(value0);

processSample1(value1);

}

}

Memory based dependences: Dmem
C ,P =

{
S0(i)→ D(i′) | 0 ≤ i′ < i

}
At ` = 1: M = Dmem

C ,P ∩
{
S0(i)→ D(i)

}
= ∅

At ` = 0: M =
{
S0(i)→ D(i′) | 0 ≤ i′ < i

}
Potential source D(i′) may not have executed even if sink S0(i) is executed
⇒ parametrization required

sink C

potential source P

Parametrization Representation January 21, 2013 18 / 43

Parameter Representation

Original:
M =

{
S0(i)→ D(i′) | 0 ≤ i′ < i

}
After parameter introduction:

M′ =
{
S0(i)→ D(λP

C(i)) | 0 ≤ λ
P
C(i) < i ∧ βP

C(i) = 1
}

⇒ lexmax M′ = M′

Meaning of the parameters:

λP
C(k): last executed iteration of Dmem

C ,P (k)

βP
C(k): any iteration of Dmem

C ,P (k) is executed

Note: FADA introduces separate set of parameters for each lexmax
Note: λP

C(k) and βP
C(k) depend on k, but dependence can be kept implicit

⇒ λP
C and βP

C

Parametrization Representation January 21, 2013 18 / 43

Parameter Representation

Original:
M =

{
S0(i)→ D(i′) | 0 ≤ i′ < i

}
After parameter introduction:

M′ =
{
S0(i)→ D(λP

C(i)) | 0 ≤ λ
P
C(i) < i ∧ βP

C(i) = 1
}

⇒ lexmax M′ = M′

Meaning of the parameters:

λP
C(k): last executed iteration of Dmem

C ,P (k)

βP
C(k): any iteration of Dmem

C ,P (k) is executed

Note: FADA introduces separate set of parameters for each lexmax
Note: λP

C(k) and βP
C(k) depend on k, but dependence can be kept implicit

⇒ λP
C and βP

C

Parametrization Introduction January 21, 2013 19 / 43

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

dimensions inside innermost condition that is not static affine
dimensions that can only attain a single value (for a given value of k)
dimensions before `

⇒ replace β by σ: the number of implicitly equal shared iterators
β = 1 → σ ≥ `

β = 0 → σ < `

I when moving to ` − 1
F introduce additional parameter λ`−1 (if needed)
F make implicit equality explicit

I at the end of the dataflow analysis
σ ≥ `≤ → β = 1
σ < `≤ → β = 0

(`≤: smallest ` for which parametrization was applied)
λ(k) and β(k) now refer to last execution of D(k)
(D: result of projecting out parameters from final dataflow relation)

Parametrization Introduction January 21, 2013 19 / 43

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

dimensions inside innermost condition that is not static affine

dimensions that can only attain a single value (for a given value of k)
dimensions before `

⇒ replace β by σ: the number of implicitly equal shared iterators
β = 1 → σ ≥ `

β = 0 → σ < `

I when moving to ` − 1
F introduce additional parameter λ`−1 (if needed)
F make implicit equality explicit

I at the end of the dataflow analysis
σ ≥ `≤ → β = 1
σ < `≤ → β = 0

(`≤: smallest ` for which parametrization was applied)
λ(k) and β(k) now refer to last execution of D(k)
(D: result of projecting out parameters from final dataflow relation)

Parametrization Introduction January 21, 2013 19 / 43

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

dimensions inside innermost condition that is not static affine

for (i = 0; i < 100; ++i)

if (t())

for (j = 0; j < 100; ++j)

A: a = t();

B: b = a;

M =
{
B()→ A(i, j) | 0 ≤ i, j < 100

}

M′ =
{
B()→ A(λ0, j) | 0 ≤ λ0, j < 100 ∧ β = 1

}
lexmax M′ =

{
B()→ A(λ0, 99) | 0 ≤ λ0 < 100 ∧ β = 1

}

dimensions that can only attain a single value (for a given value of k)
dimensions before `
⇒ replace β by σ: the number of implicitly equal shared iterators

β = 1 → σ ≥ `

β = 0 → σ < `

I when moving to ` − 1
F introduce additional parameter λ`−1 (if needed)
F make implicit equality explicit

I at the end of the dataflow analysis
σ ≥ `≤ → β = 1
σ < `≤ → β = 0

(`≤: smallest ` for which parametrization was applied)
λ(k) and β(k) now refer to last execution of D(k)
(D: result of projecting out parameters from final dataflow relation)

Parametrization Introduction January 21, 2013 19 / 43

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

dimensions inside innermost condition that is not static affine

for (i = 0; i < 100; ++i)

if (t())

for (j = 0; j < 100; ++j)

A: a = t();

B: b = a;

M =
{
B()→ A(i, j) | 0 ≤ i, j < 100

}
M′ =

{
B()→ A(λ0, j) | 0 ≤ λ0, j < 100 ∧ β = 1

}

lexmax M′ =
{
B()→ A(λ0, 99) | 0 ≤ λ0 < 100 ∧ β = 1

}

dimensions that can only attain a single value (for a given value of k)
dimensions before `
⇒ replace β by σ: the number of implicitly equal shared iterators

β = 1 → σ ≥ `

β = 0 → σ < `

I when moving to ` − 1
F introduce additional parameter λ`−1 (if needed)
F make implicit equality explicit

I at the end of the dataflow analysis
σ ≥ `≤ → β = 1
σ < `≤ → β = 0

(`≤: smallest ` for which parametrization was applied)
λ(k) and β(k) now refer to last execution of D(k)
(D: result of projecting out parameters from final dataflow relation)

Parametrization Introduction January 21, 2013 19 / 43

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

dimensions inside innermost condition that is not static affine

for (i = 0; i < 100; ++i)

if (t())

for (j = 0; j < 100; ++j)

A: a = t();

B: b = a;

M =
{
B()→ A(i, j) | 0 ≤ i, j < 100

}
M′ =

{
B()→ A(λ0, j) | 0 ≤ λ0, j < 100 ∧ β = 1

}
lexmax M′ =

{
B()→ A(λ0, 99) | 0 ≤ λ0 < 100 ∧ β = 1

}

dimensions that can only attain a single value (for a given value of k)
dimensions before `

⇒ replace β by σ: the number of implicitly equal shared iterators
β = 1 → σ ≥ `

β = 0 → σ < `

I when moving to ` − 1
F introduce additional parameter λ`−1 (if needed)
F make implicit equality explicit

I at the end of the dataflow analysis
σ ≥ `≤ → β = 1
σ < `≤ → β = 0

(`≤: smallest ` for which parametrization was applied)
λ(k) and β(k) now refer to last execution of D(k)
(D: result of projecting out parameters from final dataflow relation)

Parametrization Introduction January 21, 2013 19 / 43

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

dimensions inside innermost condition that is not static affine
dimensions that can only attain a single value (for a given value of k)

dimensions before `

⇒ replace β by σ: the number of implicitly equal shared iterators
β = 1 → σ ≥ `

β = 0 → σ < `

I when moving to ` − 1
F introduce additional parameter λ`−1 (if needed)
F make implicit equality explicit

I at the end of the dataflow analysis
σ ≥ `≤ → β = 1
σ < `≤ → β = 0

(`≤: smallest ` for which parametrization was applied)
λ(k) and β(k) now refer to last execution of D(k)
(D: result of projecting out parameters from final dataflow relation)

Parametrization Introduction January 21, 2013 20 / 43

Introducing as few Parameters as possible
Dimensions that can only attain a single value

for (int k = 0; k < 100; ++k) {

N: N = f();

M: M = g();

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

A: a[i][j] = i + j;

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

H: h(i, j, a[i][j]);

}

Dmem
H,A =

{
H(k , i, j)→ A(k ′, i, j) | k ′ ≤ k

}
λ1(k , i, j) = i

λ2(k , i, j) = j
⇒ no need to introduce λ1 and λ2

a

Parametrization Introduction January 21, 2013 21 / 43

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

dimensions inside innermost condition that is not static affine
dimensions that can only attain a single value (for a given value of k)

dimensions before `

⇒ replace β by σ: the number of implicitly equal shared iterators
β = 1 → σ ≥ `

β = 0 → σ < `

I when moving to ` − 1
F introduce additional parameter λ`−1 (if needed)
F make implicit equality explicit

I at the end of the dataflow analysis
σ ≥ `≤ → β = 1
σ < `≤ → β = 0

(`≤: smallest ` for which parametrization was applied)
λ(k) and β(k) now refer to last execution of D(k)
(D: result of projecting out parameters from final dataflow relation)

Parametrization Introduction January 21, 2013 21 / 43

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

dimensions inside innermost condition that is not static affine
dimensions that can only attain a single value (for a given value of k)
dimensions before `

⇒ replace β by σ: the number of implicitly equal shared iterators
β = 1 → σ ≥ `

β = 0 → σ < `

I when moving to ` − 1
F introduce additional parameter λ`−1 (if needed)
F make implicit equality explicit

I at the end of the dataflow analysis
σ ≥ `≤ → β = 1
σ < `≤ → β = 0

(`≤: smallest ` for which parametrization was applied)
λ(k) and β(k) now refer to last execution of D(k)
(D: result of projecting out parameters from final dataflow relation)

Parametrization Introduction January 21, 2013 22 / 43

Introducing as few Parameters as possible
Dimensions before `

for (int k = 0; k < 100; ++k) {

N: N = f();

M: M = g();

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

A: a[i][j] = i + j;

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

H: h(i, j, a[i][j]);

}

At ` = 1:
M =

{
H(k , i, j)→ A(k , i, j)

}
⇒ no need to introduce λ0 (yet) at ` = 1

Note: all sinks are accounted for at ` = 1
⇒ no need to consider ` = 0 and λ0 not needed at all

a

Parametrization Introduction January 21, 2013 22 / 43

Introducing as few Parameters as possible
Dimensions before `

for (int k = 0; k < 100; ++k) {

N: N = f();

M: M = g();

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

A: a[i][j] = i + j;

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

H: h(i, j, a[i][j]);

}

At ` = 1:
M =

{
H(k , i, j)→ A(k , i, j)

}
⇒ no need to introduce λ0 (yet) at ` = 1
Note: all sinks are accounted for at ` = 1
⇒ no need to consider ` = 0 and λ0 not needed at all

a

Parametrization Introduction January 21, 2013 23 / 43

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

dimensions inside innermost condition that is not static affine
dimensions that can only attain a single value (for a given value of k)
dimensions before `

⇒ replace β by σ: the number of implicitly equal shared iterators
β = 1 → σ ≥ `

β = 0 → σ < `

I when moving to ` − 1
F introduce additional parameter λ`−1 (if needed)
F make implicit equality explicit

I at the end of the dataflow analysis
σ ≥ `≤ → β = 1
σ < `≤ → β = 0

(`≤: smallest ` for which parametrization was applied)
λ(k) and β(k) now refer to last execution of D(k)
(D: result of projecting out parameters from final dataflow relation)

Parametrization Introduction January 21, 2013 23 / 43

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

dimensions inside innermost condition that is not static affine
dimensions that can only attain a single value (for a given value of k)
dimensions before `
⇒ replace β by σ: the number of implicitly equal shared iterators

β = 1 → σ ≥ `

β = 0 → σ < `

I when moving to ` − 1
F introduce additional parameter λ`−1 (if needed)
F make implicit equality explicit

I at the end of the dataflow analysis
σ ≥ `≤ → β = 1
σ < `≤ → β = 0

(`≤: smallest ` for which parametrization was applied)
λ(k) and β(k) now refer to last execution of D(k)
(D: result of projecting out parameters from final dataflow relation)

Parametrization Introduction January 21, 2013 23 / 43

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

dimensions inside innermost condition that is not static affine
dimensions that can only attain a single value (for a given value of k)
dimensions before `
⇒ replace β by σ: the number of implicitly equal shared iterators

β = 1 → σ ≥ `

β = 0 → σ < `

I when moving to ` − 1
F introduce additional parameter λ`−1 (if needed)
F make implicit equality explicit

I at the end of the dataflow analysis
σ ≥ `≤ → β = 1
σ < `≤ → β = 0

(`≤: smallest ` for which parametrization was applied)
λ(k) and β(k) now refer to last execution of D(k)
(D: result of projecting out parameters from final dataflow relation)

Parametrization Introduction January 21, 2013 24 / 43

When to Introduce Parameters
Sink C
Potential source P
Subset of sink iteration U
Mapping to potential source iterations M

Computing

(U′,D) = lexmax
U

M

1 No filter on source
⇒ stop (no parametrization required)

2 Let F be the filter on the sink
3 Filter on source contradicts F
⇒ replace M by empty relation and stop

4 Let F ′ be equal to F updated with information from other sources
5 Filter on source contradicts F ′

⇒ replace M by empty relation and stop
6 Filter on source implied by F
⇒ stop (no parametrization required)

7 Filter on source implied by F ′

⇒ parametrize D and stop
8 Parametrize M

Parametrization Introduction January 21, 2013 24 / 43

When to Introduce Parameters
Sink C
Potential source P
Subset of sink iteration U
Mapping to potential source iterations M

Computing

(U′,D) = lexmax
U

M

1 No filter on source
⇒ stop (no parametrization required)

2 Let F be the filter on the sink
3 Filter on source contradicts F
⇒ replace M by empty relation and stop

4 Let F ′ be equal to F updated with information from other sources
5 Filter on source contradicts F ′

⇒ replace M by empty relation and stop
6 Filter on source implied by F
⇒ stop (no parametrization required)

7 Filter on source implied by F ′

⇒ parametrize D and stop
8 Parametrize M

Parametrization Introduction January 21, 2013 24 / 43

When to Introduce Parameters
Sink C
Potential source P
Subset of sink iteration U
Mapping to potential source iterations M

Computing

(U′,D) = lexmax
U

M

1 No filter on source
⇒ stop (no parametrization required)

2 Let F be the filter on the sink
3 Filter on source contradicts F
⇒ replace M by empty relation and stop

4 Let F ′ be equal to F updated with information from other sources
5 Filter on source contradicts F ′

⇒ replace M by empty relation and stop
6 Filter on source implied by F
⇒ stop (no parametrization required)

7 Filter on source implied by F ′

⇒ parametrize D and stop
8 Parametrize M

Parametrization Introduction January 21, 2013 25 / 43

Filter on source contradicts F

while (1) {

N: n = f();

a = g();

if (n < 100)

H: a = h();

if (n > 200)

T: t(a);

}

` = 1

Potential source filter access relation{
H(i)→ (N(i)→ n)

}
Potential source filter value relation{

H(i)→ (n) | i ≥ 0 ∧ n < 100
}

Sink filter access relation{
T(i)→ (N(i)→ n)

}
Sink filter value relation{

T(i)→ (n) | i ≥ 0 ∧ n > 200
}

potential source

sink

same filter element

contradiction

Parametrization Introduction January 21, 2013 25 / 43

Filter on source contradicts F

while (1) {

N: n = f();

a = g();

if (n < 100)

H: a = h();

if (n > 200)

T: t(a);

}

` = 1

Potential source filter access relation{
H(i)→ (N(i)→ n)

}
Potential source filter value relation{

H(i)→ (n) | i ≥ 0 ∧ n < 100
}

Sink filter access relation{
T(i)→ (N(i)→ n)

}
Sink filter value relation{

T(i)→ (n) | i ≥ 0 ∧ n > 200
}

potential source

sink

same filter element

contradiction

Parametrization Introduction January 21, 2013 25 / 43

Filter on source contradicts F

while (1) {

N: n = f();

a = g();

if (n < 100)

H: a = h();

if (n > 200)

T: t(a);

}

` = 1

Potential source filter access relation{
H(i)→ (N(i)→ n)

}
Potential source filter value relation{

H(i)→ (n) | i ≥ 0 ∧ n < 100
}

Sink filter access relation{
T(i)→ (N(i)→ n)

}
Sink filter value relation{

T(i)→ (n) | i ≥ 0 ∧ n > 200
}

potential source

sink

same filter element

contradiction

Parametrization Introduction January 21, 2013 26 / 43

When to Introduce Parameters
Sink C
Potential source P
Subset of sink iteration U
Mapping to potential source iterations M

Computing

(U′,D) = lexmax
U

M

1 No filter on source
⇒ stop (no parametrization required)

2 Let F be the filter on the sink
3 Filter on source contradicts F
⇒ replace M by empty relation and stop

4 Let F ′ be equal to F updated with information from other sources
5 Filter on source contradicts F ′

⇒ replace M by empty relation and stop
6 Filter on source implied by F
⇒ stop (no parametrization required)

7 Filter on source implied by F ′

⇒ parametrize D and stop
8 Parametrize M

Parametrization Introduction January 21, 2013 26 / 43

When to Introduce Parameters
Sink C
Potential source P
Subset of sink iteration U
Mapping to potential source iterations M

Computing

(U′,D) = lexmax
U

M

1 No filter on source
⇒ stop (no parametrization required)

2 Let F be the filter on the sink
3 Filter on source contradicts F
⇒ replace M by empty relation and stop

4 Let F ′ be equal to F updated with information from other sources
5 Filter on source contradicts F ′

⇒ replace M by empty relation and stop

6 Filter on source implied by F
⇒ stop (no parametrization required)

7 Filter on source implied by F ′

⇒ parametrize D and stop
8 Parametrize M

Parametrization Introduction January 21, 2013 27 / 43

Filter on source contradicts F ′

N: n = f();

if (n < 100)

H: a = h();

if (n < 200)

H2: a = h2();

T: t(a);

}

lexmax
U

M

M =
{
T()→ H()

}
U =

{
T() | σH2 < 0

}

Updated sink filter access relation{
T(i)→ (N(i)→ n)

}
Updated sink filter value relation{

T(i)→ (n) | i ≥ 0 ∧ n ≥ 200
}

potential source

sink

H2 not executed

Parametrization Introduction January 21, 2013 27 / 43

Filter on source contradicts F ′

N: n = f();

if (n < 100)

H: a = h();

if (n < 200)

H2: a = h2();

T: t(a);

}

lexmax
U

M

M =
{
T()→ H()

}
U =

{
T() | σH2 < 0

}

Updated sink filter access relation{
T(i)→ (N(i)→ n)

}
Updated sink filter value relation{

T(i)→ (n) | i ≥ 0 ∧ n ≥ 200
}

potential source

sink
H2 not executed

Parametrization Introduction January 21, 2013 27 / 43

Filter on source contradicts F ′

N: n = f();

if (n < 100)

H: a = h();

if (n < 200)

H2: a = h2();

T: t(a);

}

lexmax
U

M

M =
{
T()→ H()

}
U =

{
T() | σH2 < 0

}
Updated sink filter access relation{

T(i)→ (N(i)→ n)
}

Updated sink filter value relation{
T(i)→ (n) | i ≥ 0 ∧ n ≥ 200

}

potential source

sink
H2 not executed

Parametrization Introduction January 21, 2013 28 / 43

When to Introduce Parameters
Sink C
Potential source P
Subset of sink iteration U
Mapping to potential source iterations M

Computing

(U′,D) = lexmax
U

M

1 No filter on source
⇒ stop (no parametrization required)

2 Let F be the filter on the sink
3 Filter on source contradicts F
⇒ replace M by empty relation and stop

4 Let F ′ be equal to F updated with information from other sources
5 Filter on source contradicts F ′

⇒ replace M by empty relation and stop

6 Filter on source implied by F
⇒ stop (no parametrization required)

7 Filter on source implied by F ′

⇒ parametrize D and stop
8 Parametrize M

Parametrization Introduction January 21, 2013 28 / 43

When to Introduce Parameters
Sink C
Potential source P
Subset of sink iteration U
Mapping to potential source iterations M

Computing

(U′,D) = lexmax
U

M

1 No filter on source
⇒ stop (no parametrization required)

2 Let F be the filter on the sink
3 Filter on source contradicts F
⇒ replace M by empty relation and stop

4 Let F ′ be equal to F updated with information from other sources
5 Filter on source contradicts F ′

⇒ replace M by empty relation and stop
6 Filter on source implied by F
⇒ stop (no parametrization required)

7 Filter on source implied by F ′

⇒ parametrize D and stop
8 Parametrize M

Parametrization Introduction January 21, 2013 29 / 43

Filter on source implied by F

while (1) {

N: n = f();

a = g();

if (n < 200)

H: a = h();

if (n < 100)

T: t(a);

}

` = 1

Potential source filter access relation{
H(i)→ (N(i)→ n)

}
Potential source filter value relation{

H(i)→ (n) | i ≥ 0 ∧ n < 200
}

Sink filter access relation{
T(i)→ (N(i)→ n)

}
Sink filter value relation{

T(i)→ (n) | i ≥ 0 ∧ n < 100
}

potential source

sink

Parametrization Introduction January 21, 2013 30 / 43

When to Introduce Parameters
Sink C
Potential source P
Subset of sink iteration U
Mapping to potential source iterations M

Computing

(U′,D) = lexmax
U

M

1 No filter on source
⇒ stop (no parametrization required)

2 Let F be the filter on the sink
3 Filter on source contradicts F
⇒ replace M by empty relation and stop

4 Let F ′ be equal to F updated with information from other sources
5 Filter on source contradicts F ′

⇒ replace M by empty relation and stop
6 Filter on source implied by F
⇒ stop (no parametrization required)

7 Filter on source implied by F ′

⇒ parametrize D and stop
8 Parametrize M

Parametrization Introduction January 21, 2013 30 / 43

When to Introduce Parameters
Sink C
Potential source P
Subset of sink iteration U
Mapping to potential source iterations M

Computing

(U′,D) = lexmax
U

M

1 No filter on source
⇒ stop (no parametrization required)

2 Let F be the filter on the sink
3 Filter on source contradicts F
⇒ replace M by empty relation and stop

4 Let F ′ be equal to F updated with information from other sources
5 Filter on source contradicts F ′

⇒ replace M by empty relation and stop
6 Filter on source implied by F
⇒ stop (no parametrization required)

7 Filter on source implied by F ′

⇒ parametrize D and stop

8 Parametrize M

Parametrization Introduction January 21, 2013 31 / 43

Filter on source implied by F ′

N: n = f();

if (n < 200)

H: a = h();

if (n > 100)

H2: a = h2();

T: t(a);

}

lexmax
U

M

M =
{
T()→ H()

}
U =

{
T() | σH2 < 0

}
Updated sink filter access relation{

T(i)→ (N(i)→ n)
}

Updated sink filter value relation{
T(i)→ (n) | i ≥ 0 ∧ n ≤ 100

}

potential source

sink

Parametrization Introduction January 21, 2013 32 / 43

When to Introduce Parameters
Sink C
Potential source P
Subset of sink iteration U
Mapping to potential source iterations M

Computing

(U′,D) = lexmax
U

M

1 No filter on source
⇒ stop (no parametrization required)

2 Let F be the filter on the sink
3 Filter on source contradicts F
⇒ replace M by empty relation and stop

4 Let F ′ be equal to F updated with information from other sources
5 Filter on source contradicts F ′

⇒ replace M by empty relation and stop
6 Filter on source implied by F
⇒ stop (no parametrization required)

7 Filter on source implied by F ′

⇒ parametrize D and stop

8 Parametrize M

Parametrization Introduction January 21, 2013 32 / 43

When to Introduce Parameters
Sink C
Potential source P
Subset of sink iteration U
Mapping to potential source iterations M

Computing

(U′,D) = lexmax
U

M

1 No filter on source
⇒ stop (no parametrization required)

2 Let F be the filter on the sink
3 Filter on source contradicts F
⇒ replace M by empty relation and stop

4 Let F ′ be equal to F updated with information from other sources
5 Filter on source contradicts F ′

⇒ replace M by empty relation and stop
6 Filter on source implied by F
⇒ stop (no parametrization required)

7 Filter on source implied by F ′

⇒ parametrize D and stop
8 Parametrize M

Parametrization Additional Constraints January 21, 2013 33 / 43

Additional Constraints on Parameters

Some source iterations are definitely executed
⇒ λ no later than definitely executed iterations

Eliminate (some) conflicts with other parameters

state = 0;

while (1) {

sample = radioFrontend();

if (t(state)) {

D: state = detect(sample);

} else {

C: decode(sample, &state, &value0);

value1 = processSample0(value0);

processSample1(value1);

}

}

⇒ λC0(i) and λD0(i) cannot both be smaller than i − 1

Parametrization Additional Constraints January 21, 2013 33 / 43

Additional Constraints on Parameters

Some source iterations are definitely executed
⇒ λ no later than definitely executed iterations

Eliminate (some) conflicts with other parameters

state = 0;

while (1) {

sample = radioFrontend();

if (t(state)) {

D: state = detect(sample);

} else {

C: decode(sample, &state, &value0);

value1 = processSample0(value0);

processSample1(value1);

}

}

⇒ λC0(i) and λD0(i) cannot both be smaller than i − 1

Related Work January 21, 2013 34 / 43

Outline
1 Motivation

General Motivation
Our Motivation

2 Array Dataflow Analysis
Standard
Fuzzy
On Demand Parametric

3 Dynamic Conditions
4 Parametrization

Overview
Representation
Introduction
Additional Constraints

5 Related Work
6 Experimental Results
7 Conclusion

Related Work January 21, 2013 35 / 43

Interaction with Libraries

clang GMP

isl NTL PolyLib

pet barvinok

PPCG

isa iscc

HiPEAC 2013

IMPACT 2012

IMPACT 2011

isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations
pet: extracts polyhedral model from clang AST
isa: prototype tool set including

derivation of process networks (with On Demand Parametric ADA)
equivalence checker

PPCG: Polyhedral Parallel Code Generator

Related Work January 21, 2013 35 / 43

Interaction with Libraries

clang GMP

isl NTL PolyLib

pet barvinok

PPCG isa isccHiPEAC 2013

IMPACT 2012

IMPACT 2011

isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations
pet: extracts polyhedral model from clang AST
isa: prototype tool set including

derivation of process networks (with On Demand Parametric ADA)
equivalence checker

PPCG: Polyhedral Parallel Code Generator

Related Work January 21, 2013 36 / 43

Related Work

Fuzzy Array Dataflow Analysis
⇒ only known publicly available implementation: fadatool

Pugh et al. (1994) and Maslov (1995) produce approximate results
Collard et al. (1999)

I handle unstructured programs
I only collect constraints
I assume Omega can solve the constraints, but it cannot

Experimental Results January 21, 2013 37 / 43

Outline
1 Motivation

General Motivation
Our Motivation

2 Array Dataflow Analysis
Standard
Fuzzy
On Demand Parametric

3 Dynamic Conditions
4 Parametrization

Overview
Representation
Introduction
Additional Constraints

5 Related Work
6 Experimental Results
7 Conclusion

Experimental Results January 21, 2013 38 / 43

Experimental Results
input da fadatool fadatool -s

time p d time p l time p l
Example from paper 0.01s 0 5 0.01s 6 6 0.01s 6 6
Example from slides 0.01s 4 9 0.01s 6 16 incorrect
fuzzy4 0.06s 3 9 0.02s 4 9 0.01s 0 9
for1 0.02s 2 3 0.01s 4 46 0.02s 2 3
for2 0.03s 2 3 0.09s 12 5k 0.04s 4 3
for3 0.04s 2 3 42s 24 1M 0.08s 6 3
for4 0.06s 2 3 0.16s 8 3
for5 0.08s 2 3 0.25s 10 3
for6 0.14s 2 3 0.42s 12 3
cascade if1 0.02s 2 3 0.01s 2 4 0.01s 2 4
cascade if2 0.02s 2 10 0.02s 4 52 0.02s 2 8
cascade if3 0.03s 2 22 0.03 6 723 0.36s 3 16
cascade if4 0.02s 2 10 0.17s 8 9k 1m 4 28
while1 0.01s 0 4 0.00s 1 4 0.01s 0 4
while2 0.03s 3 4 0.01s 5 6 incorrect
if var 0.03s 4 3 0.01s 2 8 0.01s 2 4
if while 0.04s 2 14 0.01s 5 58 0.02s 4 58
if2 0.02s 2 2 0.46s 12 29k 0.04s 4 2

Experimental Results January 21, 2013 38 / 43

Experimental Results
input da fadatool fadatool -s

time p d time p l time p l
Example from paper 0.01s 0 5 0.01s 6 6 0.01s 6 6
Example from slides 0.01s 4 9 0.01s 6 16 incorrect
fuzzy4 0.06s 3 9 0.02s 4 9 0.01s 0 9
for1 0.02s 2 3 0.01s 4 46 0.02s 2 3
for2 0.03s 2 3 0.09s 12 5k 0.04s 4 3
for3 0.04s 2 3 42s 24 1M 0.08s 6 3
for4 0.06s 2 3 0.16s 8 3
for5 0.08s 2 3 0.25s 10 3
for6 0.14s 2 3 0.42s 12 3
cascade if1 0.02s 2 3 0.01s 2 4 0.01s 2 4
cascade if2 0.02s 2 10 0.02s 4 52 0.02s 2 8
cascade if3 0.03s 2 22 0.03 6 723 0.36s 3 16
cascade if4 0.02s 2 10 0.17s 8 9k 1m 4 28
while1 0.01s 0 4 0.00s 1 4 0.01s 0 4
while2 0.03s 3 4 0.01s 5 6 incorrect
if var 0.03s 4 3 0.01s 2 8 0.01s 2 4
if while 0.04s 2 14 0.01s 5 58 0.02s 4 58
if2 0.02s 2 2 0.46s 12 29k 0.04s 4 2

Experimental Results January 21, 2013 38 / 43

Experimental Results
input da fadatool fadatool -s

time p d time p l time p l
Example from paper 0.01s 0 5 0.01s 6 6 0.01s 6 6
Example from slides 0.01s 4 9 0.01s 6 16 incorrect
fuzzy4 0.06s 3 9 0.02s 4 9 0.01s 0 9
for1 0.02s 2 3 0.01s 4 46 0.02s 2 3
for2 0.03s 2 3 0.09s 12 5k 0.04s 4 3
for3 0.04s 2 3 42s 24 1M 0.08s 6 3
for4 0.06s 2 3 0.16s 8 3
for5 0.08s 2 3 0.25s 10 3
for6 0.14s 2 3 0.42s 12 3
cascade if1 0.02s 2 3 0.01s 2 4 0.01s 2 4
cascade if2 0.02s 2 10 0.02s 4 52 0.02s 2 8
cascade if3 0.03s 2 22 0.03 6 723 0.36s 3 16
cascade if4 0.02s 2 10 0.17s 8 9k 1m 4 28
while1 0.01s 0 4 0.00s 1 4 0.01s 0 4
while2 0.03s 3 4 0.01s 5 6 incorrect
if var 0.03s 4 3 0.01s 2 8 0.01s 2 4
if while 0.04s 2 14 0.01s 5 58 0.02s 4 58
if2 0.02s 2 2 0.46s 12 29k 0.04s 4 2

Experimental Results January 21, 2013 39 / 43

Larger Example — Input
for (j = 1; j <= frame; j++) {

initialize(frame, n_act, &scor, &act, &ps, cmp,

&s, &n, &idx, &mixw_cb, &cmp_l, &n_act_l, &act_l, &scor_l);

for (i = 0; i < n; ++i) {

initFeatBuff(i, &feat_buff , &featbuf_l);

copyFeat(&s, frame, i, idx, &s);

mgau_dist(&s, frame, i, &featbuf_l , &s);

hist_l = mgau_norm(&s, frame, i);

if (mixw_cb >= 1) {

if (cmp_l >= 1)

get_scors_4b_all(&s, i, hist_l, &scor_l, &scor_l);

else

get_scors_4b(&s, i, hist_l, n_act_l, &act_l, &scor_l, &scor_l);

} else {

if (cmp_l >= 1)

get_scors_8b_all(&s, i, hist_l, &scor_l, &scor_l);

else

get_scors_8b(&s, i, hist_l, n_act_l, &act_l, &scor_l, &scor_l);

}

write_scor(&scor_l, &scor_l);

}

}

Experimental Results January 21, 2013 40 / 43

Larger Example — Dataflow Graph

initialize

initFeatBuff

n

copyFeat

idx n s

mgau_dist

n

mgau_norm

n

get_scors_4b_all

mixw_cbcmp_l scor_l n

get_scors_4b

mixw_cb cmp_ln_act_l act_l scor_l n

get_scors_8b_all

mixw_cbcmp_l scor_l n

get_scors_8b

mixw_cb cmp_l n_act_l act_l scor_l n

write_scor

n

n

featbuf_l

n idx

s s

n

s

s

s s s

n

hist_l

hist_l hist_l hist_l

n mixw_cbcmp_l

scor_l beta_1

n mixw_cbcmp_ln_act_lact_l

scor_lbeta_2

n mixw_cbcmp_l

scor_l beta_3

n mixw_cbcmp_ln_act_lact_l

scor_l beta_4

scor_l

scor_l scor_l scor_l

n scor_l: 0scor_l: 0scor_l: 0

Experimental Results January 21, 2013 41 / 43

Larger Example — (Partial) Process Network
initialize

out_8ND_0 out_7ND_0out_7ND_0 out_7ND_0out_7ND_0out_7ND_0 out_7ND_0out_7ND_0 out_7ND_0out_7ND_0out_9ND_0 out_9ND_0out_9ND_0 out_9ND_0out_10ND_0 out_10ND_0out_10ND_0 out_10ND_0out_11ND_0 out_11ND_0out_6ND_0 out_12ND_0 out_12ND_0out_13ND_0 out_13ND_0out_13ND_0 out_13ND_0

in_4ND_2

ED_0 in_0ND_1

ED_1

in_0ND_2

ED_2

in_0ND_3

ED_3

in_0ND_4

ED_4

in_0ND_5

ED_5

in_0ND_6

ED_6

in_0ND_7

ED_7

in_0ND_8

ED_8

in_0ND_9

ED_9

in_1ND_5

ED_10

in_1ND_6

ED_11

in_1ND_7

ED_12

in_1ND_8

ED_13

in_2ND_5

ED_14

in_2ND_6

ED_15

in_2ND_7

ED_16

in_2ND_8

ED_17

in_6ND_6

ED_23

in_6ND_8

ED_24

in_1ND_2

ED_26

in_7ND_6

ED_37

in_7ND_8

ED_38

in_6ND_5

ED_40

in_8ND_6

ED_42

in_6ND_7

ED_44

in_8ND_8

ED_46

initFeatBuff

out_3ND_1

in_4ND_3

ED_35

copyFeat

out_5ND_2

in_1ND_2 in_1ND_3

ED_28 mgau_dist

out_5ND_3 out_5ND_3 out_5ND_3 out_5ND_3out_5ND_3 out_5ND_3

ED_27

in_1ND_4

ED_29

in_3ND_5

ED_30

in_3ND_6

ED_31

in_3ND_7

ED_32

in_3ND_8

ED_33

mgau_norm

out_4ND_4 out_4ND_4out_4ND_4 out_4ND_4

in_5ND_5

ED_19

in_5ND_6

ED_20

in_5ND_7

ED_21

in_5ND_8

ED_22

get_scors_4b_all

out_7ND_5 dc0_ND_5_b

in_6ND_5

in_3ND_9

ED_48

dc0_ND_9_b

CED_53

get_scors_4b

out_9ND_6 dc0_ND_6_b

in_8ND_6

in_4ND_9

ED_49

dc1_ND_9_b

CED_54

get_scors_8b_all

out_7ND_7 dc0_ND_7_b

in_6ND_7

in_5ND_9

ED_50

dc2_ND_9_b

CED_55

get_scors_8b

out_9ND_8dc0_ND_8_b

in_8ND_8

in_1ND_9

ED_51dc3_ND_9_b

CED_56

write_scor

out_2ND_9 out_2ND_9out_2ND_9 out_2ND_9

in_1ND_9 in_1ND_9 in_1ND_9

ED_41 ED_43ED_45 ED_47

Conclusion January 21, 2013 42 / 43

Outline
1 Motivation

General Motivation
Our Motivation

2 Array Dataflow Analysis
Standard
Fuzzy
On Demand Parametric

3 Dynamic Conditions
4 Parametrization

Overview
Representation
Introduction
Additional Constraints

5 Related Work
6 Experimental Results
7 Conclusion

Conclusion January 21, 2013 43 / 43

Conclusion

Conclusions

Dynamic behavior represented using “filters”

Exact, possibly parametric, dataflow analysis

Prototype implementation in isa
Similar to FADA, but

I Parameters have a different meaning
I Effect analyzed before parameters are introduced
I All computations are performed directly on affine sets and maps

Future work

Tighter integration into pet

	Motivation
	General Motivation
	Our Motivation

	Array Dataflow Analysis
	Standard
	Fuzzy
	On Demand Parametric

	Dynamic Conditions
	Parametrization
	Overview
	Representation
	Introduction
	Additional Constraints

	Related Work
	Experimental Results
	Conclusion

