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Motivation

@ Dataflow analysis determines for read access in a statement
instance, the statement instance that wrote the value being read
@ Many uses in polyhedral analysis/compilation
> array expansion
> scheduling
» equivalence checking
» optimizing computation/communication overlap in MPI programs
» derivation of process networks

@ Standard dataflow analysis (Feautrier) requires static affine input
programs

@ Extensions are needed for programs with dynamic/non-affine
constructs
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Our Motivation: Derivation of Process Networks

@ Main purpose: extract task level parallelism from dataflow graph

statement — process
flow dependence — communication channel

= requires dataflow analysis
@ Processes are mapped to parallel hardware (e.g., FPGA)
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Our Motivation: Derivation of Process Networks

@ Main purpose: extract task level parallelism from dataflow graph

statement — process
flow dependence — communication channel

= requires dataflow analysis
@ Processes are mapped to parallel hardware (e.g., FPGA)
Example:
for (i = 0; i < n; ++1i) {

a =1fQ;
g(a);
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Dynamic Process Networks

int state = 0;
for (i = 0; i <= 10; i++) {
sample = radioFrontend();
if (state == 0) {
state = detect(sample);
} else {
state = decode(sample, &value®);
valuel = processSample®(value0);
processSamplel(valuel);
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Dynamic Process Networks

int state = 0;
for (i = 0; i <= 10; i++) {
sample = radioFrontend();

if (state == 0) {

}

state = detect(sample);

else {

state = decode(sample, &value®);
valuel = processSample®(value0);

processSamplel(valuel);

@ additional control channels
@ determine operation of data channels

dataflow analysis needs to remain exact,
but may depend on run-time information

January 21, 2013
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e Array Dataflow Analysis
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Standard Array Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single reference
for (i = 0; i < N; ++1)
for (j = 0; j <N - i; ++j)
F: ali+j] = f(ali+jl);
for (i = 0; i < N; ++1)
W: Write(Cal[il);
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Standard Array Dataflow Analysis

January 21, 2013

Given a read from an array element, what was the last write to

the same array element before the read?

Simple case: array written through a single reference
for (i = 0; i < N; ++1)
for (j = 0; j <N - i; ++j)
F: ali+j] = f(ali+jl);
for (i = 0; i < N; ++1)
W: Write(Cal[il);

Access relations:

Al:=[N]->{F[i,j]->a[i+]j]:0<=i<N and O0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <=1 < N };
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Standard Array Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single reference

for (i = 0; i < N; ++1) Fe. a1

for (j = 0; j < N - i; ++j) .\.a
F: ali+j] = f(ali+jil); /
for (i = 0; i < N; ++1i) W e A2

W: WriteCalil);

Access relations:

Al:=[N]->{F[i,j]->al[i+j]:0<=1i<N and 0<=j<N-i};
A2:=[N]->{W[i] -> a[i] : ® <= i < N };

Map to all writes: R := A2 . (A17-1);

[N] > { W[i] -> F[i’,i-1’] : ® <= i,i’< N and i’<=1 }
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for (i = 0; i < N; ++1i) W e A2

W: WriteCalil);
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Al:=[N]->{F[i,j]l->a[i+j]:0<=i<N and 0<=j<N-i};
A2:=[N]->{W[i] -> a[i]l : ® <= i < N };

Map to all writes: R := A2 . (A17-1);
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Last write: 1lexmax R; # [N] -> { W[i] -> F[1i,0] : 0 <= 1 < N }
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Standard Array Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single reference
for (i = 0; i < N; ++1) Fe_ a1

for (j = 0; j < N - i; ++3) \oa
F: ali+j]l = f(ali+jil); /
for (i = 0; i < N; ++i) W e A2

W: WriteCalil);

Access relations:

Al:=[N]->{F[i,j]l->a[i+j]:0<=i<N and 0<=j<N-i};
A2:=[N]->{W[i] -> a[i]l : ® <= i < N };

Map to all writes: R := A2 . (A17-1);

[N] -> { W[i] -> F[i’,i-i’] : 0 <= i,i’< N and i’<=1i }
Last write: 1lexmax R; # [N] -> { W[i] -> F[1i,0] : 0 <= 1 < N }
In general: impose lexicographical order on shared iterators
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Standard Array Dataflow Analysis
Multiple Potential Sources
@ Dataflow is typically performed per read access (“sink”) C
@ Corresponding writes (“potential sources”) P are considered in turn
@ Map to all potential source iterations: ng;" = (A,;1 oAc)N BCP
("memory based dependences”; Bg: P executed before C)

@ Source may already be known for some sink iterations
= compute partial lexicographical maximum

(U',D) = lexgmx M

U: sink iterations for which no source has been found

M: part of memory based dependences for particular potential source
U =U\domM

M = lexmax(M N (U — ran M))

Note: here, dependence relations map sink iterations to source iterations
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Fuzzy Array Dataflow Analysis

@ Introduces parameters for each lexmax involving dynamic behavior
@ Parameters represent dynamic solution of lexmax operation

@ Derives properties on parameters after dataflow analysis
(using resolution)
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Fuzzy Array Dataflow Analysis

@ Introduces parameters for each lexmax involving dynamic behavior
@ Parameters represent dynamic solution of lexmax operation

@ Derives properties on parameters after dataflow analysis
(using resolution)

@ Parametric result is exact

@ Parameters can be projected out to obtain approximate but static
dataflow
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Fuzzy Array Dataflow Analysis

@ Introduces parameters for each lexmax involving dynamic behavior
@ Parameters represent dynamic solution of lexmax operation

@ Derives properties on parameters after dataflow analysis
(using resolution)

@ Parametric result is exact

@ Parameters can be projected out to obtain approximate but static
dataflow

Main problem for deriving process networks:
Introduces too many parameters
= too many control channels

10/43
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On Demand Parametric Array Dataflow Analysis

Similar to FADA:
@ Exact, possibly parametric, dataflow
@ Introduces parameters to represent dynamic behavior

But:
-+ Parameters have a different meaning
+ Effect analyzed before parameters are introduced
-+ All computations are performed directly on affine sets and maps
— Currently only supports dynamic conditions
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Representing Generic Dynamic Conditions

while (1) {
sample = radioFrontend();
if (t(state)) {
D: state = detect(sample);
} else { /* ... */ }
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while (1) {
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} else { /% ... */ }
3
Dynamic condition (t (state)) represented by filter

@ Filter access relation(s):
access to (virtual) array representing condition

{D(i) = (So(i) = to(i)) }

@ Filter value relation:
values of filter array elements for which statement is executed

{p(i) = (1) 17 =0}
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Representing Generic Dynamic Conditions

while (1) {
sample = radioFrontend();

if (t(state)pP—{ SO: t® = t(state);
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} else { /* ... */ }

}
Dynamic condition (t (state)) represented by filter

@ Filter access relation(s):
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@ Filter value relation:

values of filter array elements for which statement is executed

filter array

{p(i) = (1) 17 =0}
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Representing Generic Dynamic Conditions

while (1) {
sample = radioFrontend();

if (t(state)pP—{ SO: t® = t(state);

D: state = detect(sample);
} else { /* ... */ }

}
Dynamic condition (t (state)) represented by filter

o Filter access relation(s):  statement writing to filter array
access to (virtual) array representing condition

(D() - (Soli) > [6liNT
@ Filter value relation:

values of filter array elements for which statement is executed

{p(i) = (1) 17 =0}

filter array
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Representing Generic Dynamic Conditions

while (1) {
sample = radioFrontend();

if (t(state)pP—{ SO: t® = t(state);

D: state = detect(sample);
} else { /* ... */ }

}
Dynamic condition (t (state)) represented by filter

o Filter access relation(s):  statement writing to filter array
access to (virtual) array representing condition

@L)\So .W

statement reading from filter array

filter array

@ Filter value relation:
values of filter array elements for which statement is executed

{p(i) = (1) 17 =0}
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Representing Locally Static Affine Conditions
N1: n = £0;

for (int k = 0; k < 100; ++k) {
M: m=g9g0;

for (int i = 0; i < m; ++1)
for (int j = 0; j < n; ++j)

A: aljlli]l = 9QO;
N2: n=f£fQ;

}
Values of m and n not changed inside i and j loops
= locally static affine loop conditions

January 21, 2013
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Representing Locally Static Affine Conditions
N1: n = £0;

for (int k = 0; k < 100; ++k) {
M: m=9g0;

for (int i = 0; i < m; ++1)
for (int j = 0; j < n; ++j)

A: aljlli]l = 9QO;
N2: n=f£fQ;

}
Values of m and n not changed inside i and j loops
= locally static affine loop conditions

@ Filter access relations:

{A(k.i.j) = (M(k) = m())}

{A(0.1.j) = (N1() > n()) } U{A(k.1.j) = (N2(k = 1) > n()) [k > 1}
@ Filter value relation:

{A(Kk,i,j) > (m,n)|0<k<99A0<i<mAO<j<n}

Note: filter access relations exploit (static) dataflow_analysis on m.and.n
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° Parametrization
@ Overview
@ Representation
@ Introduction
@ Additional Constraints
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Overview

@ Dataflow analysis performed for each read access (sink) separately
@ Potential sources considered from closest to furthest

» number of shared loop iterators ¢

» textual order
@ For each lexmax operation

> is it possible for potential source not to execute when sink is executed?

(based on filters)
> if so, parametrize lexmax problem
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Parametrization
state = 0;
while (1) {
sample = radioFrontend();
if (t(state)) {

D: state = detect(sample);
} else {
C: decode(sample, &state, &value0);

valuel = processSample®(value®);
processSamplel (valuel);
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Parametrization

state = 0;
while (1) { sink C
sample = ra@;gFrﬁﬁ%end();

if (t(Srate)) 1

D: = detect(sample);
} else { potential source P
C: decode(sample, &state, &value0);

valuel = processSample®(value®);
processSamplel (valuel);
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Parametrization

state = 0;
while (1) { sink C
sample = ra@igErﬁﬁ%end();

if (t(Srate)) 1

D: = detect(sample);
} else { potential source P
C: decode(sample, &state, &value0);

valuel = processSample®(value®);
processSamplel (valuel);

}
Memory based dependences: Dg3" = {Se(i) = D(i') | 0 < " < i}
Ate =1: M= DEem 0 {Sg(i) > D(i)} = 0
At€=0:M={Se(i) > D) |0<i <i}
Potential source D(i") may not have executed even if sink Sg(i) is executed
= parametrization required
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Representation
Parameter Representation
Original:
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After parameter introduction:

M = {s(i) > DUE(1)) 10 < AZ() <i n BE() = 1)
= lexmax M’ = M’
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Parameter Representation

Original:

After parameter introduction:
M’ = {Se(i) = D(A5(1)) 10 < AZ(I) < i A E(I) =1}
= lexmax M’ = M’

Meaning of the parameters:
o 27(k): last executed iteration of DF%" (k)
o L (k): any iteration of D2'(k) is executed
Note: FADA introduces separate set of parameters for each lexmax

Note: A£(k) and £ (k) depend on k, but dependence can be kept implicit
= A and B
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Introducing as few Parameters as possible

In principle, the number of elements in A is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements
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@ dimensions inside innermost condition that is not static affine
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Introducing as few Parameters as possible

In principle, the number of elements in A is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements
@ dimensions inside innermost condition that is not static affine
for (i = 0; i < 100; ++i)
if (tO)
for (j = O
A: a
B: .

j o< 100; ++3)
tO;

[| ==

M={B()— A(i.j) | 0 <i,j< 100}
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Introducing as few Parameters as possible

In principle, the number of elements in A is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements
@ dimensions inside innermost condition that is not static affine
for (i = 0; i < 100; ++i)
if (tO)
for (j = O
A: a
B: .

j o< 100; ++3)
tO;

M={B()— A(i.j)| 0 < i,j < 100}

M ={B() = A(10,j) 10 < 20,j <100 A =1}
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Introducing as few Parameters as possible

In principle, the number of elements in A is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements
@ dimensions inside innermost condition that is not static affine
for (i = 0; i < 100; ++i)
if (tO)
for (j = O
A: a
B: .

j o< 100; ++3)
tO;

M={B()— A(i,j) |0 <ij< 100}
M ={B() - A(10.j) |0 < A,j < 100 AB = 1}

lexmax M = {B() — A(10,99) |0 <o <100 A8 =1}
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Introducing as few Parameters as possible

In principle, the number of elements in A is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements
@ dimensions inside innermost condition that is not static affine
@ dimensions that can only attain a single value (for a given value of k)
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Introducing as few Parameters as possible
Dimensions that can only attain a single value
for (int k = 0; k < 100; ++k) {
N: N = £0;
M: M=90;
for (int i = 0; i < N; ++i)
for (int j = 0; j < M; ++j)
A: alill[j]l =1 + J;
for (int i = 0; i < N; ++1i)
for (int j = 0; j < M; ++j)
H: h(i, j, alilljil);

DIfIr,lzm = {H(k, I,]) - A(k/,i,j) k' <k)
/7.1(/(, i,j) =i

A2k, i, j) =]
= no need to introduce 11 and A
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However, in many cases, we can avoid introducing some of those elements
@ dimensions inside innermost condition that is not static affine
@ dimensions that can only attain a single value (for a given value of k)
@ dimensions before ¢
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Introducing as few Parameters as possible
Dimensions before ¢
for (int k = 0; k < 100; ++k) {
N: N = £0;
M: M=90;
for (int i = 0; i < N; ++i)
for (int j = 0; j < M; ++j)
A: alill[j]l =1 + J;
for (int i = 0; i < N; ++1)
for (int j = 0; j < M; ++j)
H: h(i, j, alilljil);
}
At ¢ =1:
M = {H(k,i,j) - A(k,i,j)}
= no need to introduce Ag (yet) at £ = 1
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Introducing as few Parameters as possible
Dimensions before ¢
for (int k = 0; k < 100; ++k) {
N: N =£0;
M: M=90;
for (int i = 0; i < N; ++i)
for (int j = 0; j < M; ++j)
A: alill[j]l =1 + J;
for (int i = 0; i < N; ++1)
for (int j = 0; j < M; ++j)
H: h(i, j, alilljil);
}
At ¢ =1:
M = {H(k,i,j) — A(k,i,j)}
= no need to introduce g (yet) at £ = 1
Note: all sinks are accounted for at £ = 1
= no need to consider £ = 0 and Ay not needed at all
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Introducing as few Parameters as possible

In principle, the number of elements in A is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements
@ dimensions inside innermost condition that is not static affine
@ dimensions that can only attain a single value (for a given value of k)
@ dimensions before ¢
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Introducing as few Parameters as possible

In principle, the number of elements in A is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

@ dimensions inside innermost condition that is not static affine
@ dimensions that can only attain a single value (for a given value of k)
@ dimensions before ¢
= replace B by o: the number of implicitly equal shared iterators
=1 —- o=¢
B=0 - o</
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Introducing as few Parameters as possible

In principle, the number of elements in A is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

@ dimensions inside innermost condition that is not static affine
@ dimensions that can only attain a single value (for a given value of k)
@ dimensions before ¢
= replace S by o: the number of implicitly equal shared iterators
=1 —- o=¢
=0 — o<
» when moving to £ — 1
* introduce additional parameter A,_1 (if needed)
* make implicit equality explicit
> at the end of the dataflow analysis
o>l — pB=1
o<t —> B=0
(¢<: smallest ¢ for which parametrization was applied)
A(k) and B(k) now refer to last execution of D(k)
(D: result of projecting out parameters from final dataflow relation)
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When to Introduce Parameters

@ Sink C Computing

@ Potential source P

@ Subset of sink iteration U (U, D) = lexmax M
@ Mapping to potential source iterations M U
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When to Introduce Parameters

@ Sink C Computing

@ Potential source P

@ Subset of sink iteration U (U, D) = lexmax M
@ Mapping to potential source iterations M U

@ No filter on source
= stop (no parametrization required)
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When to Introduce Parameters

@ Sink C Computing

@ Potential source P

@ Subset of sink iteration U (U, D) = lexmax M
@ Mapping to potential source iterations M U

@ No filter on source
= stop (no parametrization required)
@ Let F be the filter on the sink
© Filter on source contradicts F
= replace M by empty relation and stop
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Filter on source contz}adi1cts F

@ Potential source filter access relation

{H(i) > (N() > n)}

while (1) {
N: n = £fQO; @ Potential source filter value relation

a = g() ;potential source _ _

if (n < 160) {H(i) > () [iz0A n<100]
H: @)= h0O;

if (n > 2600) @ Sink filter access relation
T: t(@;
¥ sink {T(i) = (N()) = n)}

@ Sink filter value relation

{T(i) > (n)1i=0An>200}

25/43
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Filter on source contz}adi1cts F

@ Potential source filter access relation

()= () = 1) |

same filter element

while (1) {

N: n=f(Q; @ Potential source filter value relation
a = g() ;potential soure _ '
if (n < _1606) H()) > (n)|i20A n<100}
if (n > 200 @ Sink filter access relation

T t(ap;

¥ sink {1(i) - ( ))

@ Sink filter value relation

{T(i) > () 1i=0A n>200]
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Filter on source contz}adi1cts F

@ Potential source filter access relation

()= () = 1) |
while (1) {

N: n = £fQO; @ Potential source filter value relation

a = g() ;potential soure
) H(j) — (1) > 0 A(n< 100))

if (n < _160)

same filter element

H: @ = h0O;
if (n > 200) @ Sink filter access relation
T t( ’

—

contradiction

@ Sink filter value relation
{1()) > (n) 1= 07 (n > 200)}

25/43
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When to Introduce Parameters

@ Sink C Computing

@ Potential source P

@ Subset of sink iteration U (U, D) = lexmax M
@ Mapping to potential source iterations M U

@ No filter on source
= stop (no parametrization required)
@ Let F be the filter on the sink
© Filter on source contradicts F
= replace M by empty relation and stop
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When to Introduce Parameters

@S

ink C Computing

Potential source P

Subset of sink iteration U (U', D) = lexmax M
Mapping to potential source iterations M U

No filter on source

= stop (no parametrization required)

Let F be the filter on the sink

Filter on source contradicts F

= replace M by empty relation and stop

Let F’ be equal to F updated with information from other sources
Filter on source contradicts F’

= replace M by empty relation and stop

26/43
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Filter on source contradicts F’

N:

H:

H2:

n=£fQ; potential source
if (n < 108 lexmax M
@)= 1h0; v
if (n < 200)
a = h2Q; M={T() > H()}
U

t(@{i {T()lo‘HZ<0}

sink
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Filter on source contradicts F’

N:

H:

H2:

n=£fQ; potential source
if (n < 108 lexmax M
@)= 1h0; v
if (n < 200)
a = h2Q; M={T() > H()}
t(@h; U={101"<0)

sink

H2 not executed
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Filter on source contradicts F’

January 21, 2013

N: n = £fQ; potential source

if (n < 108 lexmax M
H: @)= hO; v

if (n < 200)
H2: a = h20; M={T() > H() }
T t(@p; u={1010™<0)
¥ sink

@ Updated sink filter access relation
{1(i) > (N(i) > n)}
@ Updated sink filter value relation

{T() = (n)1iz0A n>200]

H2 not executed
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When to Introduce Parameters

@S

ink C Computing

Potential source P

Subset of sink iteration U (U', D) = lexmax M
Mapping to potential source iterations M U

No filter on source

= stop (no parametrization required)

Let F be the filter on the sink

Filter on source contradicts F

= replace M by empty relation and stop

Let F’ be equal to F updated with information from other sources
Filter on source contradicts F’

= replace M by empty relation and stop
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Filter on source implied by F

£=1
@ Potential source filter access relation
{H(i) - (N() > n)}
while (1) {
N: n=£fQO; @ Potential source filter value relation
a = g() ;potential source _ )
if (n < 200) {H(i) > (n) [i=0A n<200]
H: e = h(Q;
if (n < 100) @ Sink filter access relation
T: t(@&
¥ sink {1(i) - (8(i) > n)}

@ Sink filter value relation

{T(i) > (n)1i=0An<100}
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When to Introduce Parameters

Sink C Computing

Potential source P

Subset of sink iteration U (U', D) = lexmax M
Mapping to potential source iterations M U
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When to Introduce Parameters

Sink C Computing

Potential source P

Subset of sink iteration U (U, D) = lexmax M
Mapping to potential source iterations M U

No filter on source

= stop (no parametrization required)
Let F be the filter on the sink

Filter on source contradicts F

= replace M by empty relation and stop
Let F’ be equal to F updated with information from other sources
Filter on source contradicts F’

= replace M by empty relation and stop
Filter on source implied by F

= stop (no parametrization required)
Filter on source implied by F’

= parametrize D and stop
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Filter on source implied by F’

N: n=fQ; potential source
if (n < 200 lexmax M
H: @ = hO; v
if (n > 100)
H2: a = h2Q; M={T() - H() }
T t(@); U={1010% <0}
¥ sink
@ Updated sink filter access relation
{1(i) > (N(i) > n)}

@ Updated sink filter value relation

{T() > (n)1iz0An<100}
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When to Introduce Parameters

Sink C Computing

Potential source P

Subset of sink iteration U (U, D) = lexmax M
Mapping to potential source iterations M U

No filter on source

= stop (no parametrization required)
Let F be the filter on the sink

Filter on source contradicts F

= replace M by empty relation and stop
Let F’ be equal to F updated with information from other sources
Filter on source contradicts F’

= replace M by empty relation and stop
Filter on source implied by F

= stop (no parametrization required)
Filter on source implied by F’

= parametrize D and stop
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When to Introduce Parameters

Sink C Computing

Potential source P

Subset of sink iteration U (U', D) = lexmax M
Mapping to potential source iterations M U

No filter on source
= stop (no parametrization required)
Let F be the filter on the sink
Filter on source contradicts F
= replace M by empty relation and stop
Let F’ be equal to F updated with information from other sources
Filter on source contradicts F’
= replace M by empty relation and stop
@ Filter on source implied by F

= stop (no parametrization required)
@ Filter on source implied by F’

= parametrize D and stop
© Parametrize M
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Additional Constraints on Parameters

@ Some source iterations are definitely executed
= A no later than definitely executed iterations
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Additional Constraints on Parameters

@ Some source iterations are definitely executed
= A no later than definitely executed iterations

@ Eliminate (some) conflicts with other parameters
state = 0;
while (1) {

sample = radioFrontend();
if (t(state)) {

D: state = detect(sample);
} else {
C: decode(sample, &state, &valuel);
valuel = processSample®(value®);

processSamplel (valuel);

}

= A§(i) and A5 (i) cannot both be smaller than i — 1
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Related Work

Interaction with Libraries

clang

IMPACT 2012 | pet

isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations
pet: extracts polyhedral model from clang AST
isa: prototype tool set including
@ derivation of process networks (with On Demand Parametric ADA)

@ equivalence checker
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Interaction with Libraries

clang

PolyLib

isl|

]

barvinok

HIPEAC 2013 |[PPCG| |isa[ |iscc|IMPACT 2011

IMPACT 2012 | pet

isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations
pet: extracts polyhedral model from clang AST
isa: prototype tool set including
@ derivation of process networks (with On Demand Parametric ADA)
@ equivalence checker
PPCG: Polyhedral Parallel Code Generator
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Related Work

@ Fuzzy Array Dataflow Analysis
= only known publicly available implementation: fadatool

@ Pugh et al. (1994) and Maslov (1995) produce approximate results

@ Collard et al. (1999)
» handle unstructured programs

» only collect constraints
» assume Omega can solve the constraints, but it cannot



Experimental Results

Outline

January 21, 2013

37/43

@ Experimental Results



Experimental Results January 21, 2013 38/43

Experimental Results

input da fadatool fadatool -s
tme p d| tme p | time p I
Example from paper | 0.01s 0 5| 0.01s 6 6001s 6 6
Example from slides | 0.01s 4 9| 0.01s 6 16 incorrect
fuzzy4 0.06s 3 9|0.02s 4 9/001s 0 9
for1 0.02s 2 3|001s 4 46/|002s 2 3
for2 003s 2 3|0.09s 12 5k |0.04s 4 3
for3 0.04s 2 3 42s 24 1M | 0.08s 6 3
for4 0.06s 2 3 0.16s 8 3
for5 008 2 3 025s 10 3
foré 0.14s 2 3 042s 12 3
cascade_if1 0.02s 2 3|0.01s 2 41001s 2 4
cascade._if2 002s 2 10|0.02s 4 52002 2 8
cascade._if3 003 2 22| 003 6 723 |036s 3 16
cascade_if4 0.02s 2 10| 0.17s 8 9k im 4 28
while1 0.01s 0 4 |0.00s 1 41001s 0 4
while2 003s 3 4|0.01s 5 6 incorrect
if_var 0.03s 4 3|0.01s 2 8/001s 2 4
if_while 0.04s 2 14 |0.01s 5 58 |0.02s 4 58
if2 0.02s 2 2|046s 12 29 | 0.04s 4 _ 2
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Larger Example — Input

for (j = 1; j <= frame; j++) {
initialize(frame, n_act, &scor, &act, &ps, cmp,
&s, &n, &idx, &mixw_cb, &cmp_1l, &n_act_1, &act_1l, &scor_1)
for (i = 0; i < n; ++i) {
initFeatBuff(i, &feat_buff, &featbuf_1);
copyFeat (&s, frame, i, idx, &s);
mgau_dist(&s, frame, i, &featbuf_1, &s);
hist_1 = mgau_norm(&s, frame, i);
if (mixw_cb >= 1) {
if (cmp_1l >= 1)
get_scors_4b_all(&s, i, hist_1l, &scor_l, &scor_1);
else
get_scors_4b(&s, i, hist_1l, n_act_1, &act_l, &scor_1l, &scor_1l);
} else {
if (ecmp_1l >= 1)
get_scors_8b_all(&s, i, hist_1l, &scor_l, &scor_1);
else
get_scors_8b(&s, i, hist_1l, n_act_1, &act_l, &scor_1l, &scor_1l);
}

write_scor(&scor_1l, &scor_1l);
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Larger Example — Dataflow Graph
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Larger Example — (Partial) Process Network




Conclusion

Outline

January 21, 2013

42 /43

@ cConclusion



Conclusion January 21, 2013 43 /43

Conclusion

Conclusions
@ Dynamic behavior represented using “filters”
@ Exact, possibly parametric, dataflow analysis

@ Prototype implementation in isa
@ Similar to FADA, but
> Parameters have a different meaning
» Effect analyzed before parameters are introduced
» All computations are performed directly on affine sets and maps
Future work
@ Tighter integration into pet
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