Polyhedral Transformations of Explicitly Parallel Programs

Prasanth Chatarasi, Jun Shirako, and Vivek Sarkar
Department of Computer Science, Rice University
{prasanth,shirako,vsarkar}@rice.edu

ABSTRACT
The polyhedral model is a powerful algebraic framework that has enabled significant advances to analyses and transformations of sequential affine (sub)programs, relative to traditional AST-based approaches. However, given the rapid growth of parallel software, there is a need for increased experiences with using polyhedral frameworks for analysis and transformations of explicitly parallel programs. An interesting side effect of supporting explicitly parallel programs is that doing so can also enable analysis and transformation of programs with unanalyzable data accesses within a polyhedral framework, since explicit parallelism can often mitigate the imprecision that accompanies unanalyzable data accesses arising from a variety of sources, including unrestricted pointer aliasing, unknown function calls, and certain classes of non-affine constructs.

A summary of our approach is as follows. As in past work, we first enable conservative dependence analysis of a given region of code; for simplicity, we use an approach based on dummy variables that can work with any polyhedral tool that supports access functions. After obtaining conservative dependences, we use the Fourier-Motzkin elimination method to remove all dummy variables. Next, we identify happens-before relations from the explicitly parallel constructs, and subtract their complement from the conservative dependences. The resulting set of dependences can then be passed on to a polyhedral transformation tool, such as PLuTo, to enable transformation of explicitly-parallel programs with unanalyzable data accesses.

To motivate our approach, we studied 18 explicitly-parallel OpenMP benchmarks from the Rodinia benchmark suite, and found that these benchmarks use six classes of non-affine constructs that are commonly found in parallel scientific applications: 1) Non-affine subscript expressions, 2) Indirect array subscripts, 3) Use of structs, 4) Calls to user-defined functions, 5) Non-affine loop bounds, and 6) Non-affine if conditions. While there are known techniques from past work to enable automatic analysis for some of these non-affine constructs in polyhedral frameworks, we show that the use of explicit parallelism can enable a larger set of polyhedral transformations for some of these programs, compared to what might have been possible if the input program was sequential.

Keywords
Explicit parallelism, Polyhedral transformations

1. INTRODUCTION
A key challenge for optimizing compilers is to keep up with the increasing complexity related to locality and parallelism in modern computers, especially as computer vendors head towards new designs for extreme-scale processors and exascale systems. Classical AST-based optimizers typically focus on one particular objective at a time, such as vectorization, locality or parallelism. On the other hand, polyhedral transformation frameworks are able to support arbitrarily complex sequences of transformations of perfectly/imperfectly nested loops in a unified framework. The benefit of this unified formulation can be seen in polyhedral optimizers such as PLuTo, which has even been extended and specialized to integrate SIMD constraints. Polyhedral frameworks achieve this generality in transformation by restricting the class of programs that are supported to those that do not have “unanalyzable” data or control flow. In the original formulation of polyhedral frameworks, all array subscripts, loop bounds, and if conditions in “analyzable” programs were required to be affine functions of loop index variables and global parameters. However, decades of research since then has led to a great expansion of programs that can be considered analyzable by polyhedral frameworks.

This work is motivated by the observation that software with explicit parallelism is on the rise, and that explicit parallelism can be used to enable larger sets of polyhedral transformations (by mitigating conservative dependences), compared to what might have been possible if the input program was sequential. Our work focuses on explicitly-parallel programs that specify potential parallelism, rather than actual
parallelism. Thus, explicit parallelism is simply a specification of a partial order, which is traditionally referred to as a happens-before relation [29]. Hence, we can mitigate conservative dependences arising from unanalyzable constructs by subtracting the complement of the happens-before relation from the conservative dependences, since dependences can only occur among statement instances that are ordered by the happens-before relation. In this paper, we will restrict our attention to explicitly-parallel programs that satisfy the serial elision property i.e., the property that removal of all parallel constructs results in a sequential program that is a valid (albeit inefficient) implementation of the parallel program semantics.

A summary of our approach is as follows. As in past work, we first enable conservative dependence analysis of a given region of code; for simplicity, we use an approach based on dummy variables that can work with any polyhedral tool that supports access functions. After obtaining conservative dependences, we use the Fourier-Motzkin elimination method to remove all dummy variables. Next, we identify happens-before relations from the explicitly parallel constructs, and subtract their complement from the conservative dependences. The resulting set of dependences can then be passed on to a polyhedral transformation tool, such as PLuTo, to enable transformation of explicitly-parallel programs with unanalyzable data accesses.

To motivate our approach, we studied 18 explicitly-parallel OpenMP benchmarks from the Rodinia benchmark suite, and found that these benchmarks use six classes of non-affine constructs that are commonly found in parallel scientific applications: 1) Non-affine subscript expressions, 2) Indirect array subscripts, 3) Use of structs, 4) Calls to user-defined functions, 5) Non-affine loop bounds, and 6) Non-affine if conditions. While there are known techniques from past work to enable automatic analysis for some of these non-affine constructs in polyhedral frameworks, we show that the use of explicit parallelism can enable a larger set of polyhedral transformations for some of these programs (due to conservative dependences), compared to what might have been possible if the input program was sequential. Recent work on the PENCIL intermediate language [3], has also shown similar results through the use of directives/pragmas that can be generated from higher-level domain-specific languages (DSLs). A key difference between our approach and the PENCIL approach is that we are interested in leveraging happens-before information from programs written in general-purpose explicitly parallel languages, such as OpenMP and X10, whereas PENCIL is focused on supporting DSLs in which certain coding rules are enforced related to pointer aliasing, recursion, unstructured control flow, etc.

The rest of the paper is organized as follows. Section 2 introduces the parallel constructs considered in this paper. Section 3 motivates the problem and provides an overview of our proposed approach. Section 4 discuss some potential limitations of existing polyhedral frameworks. Section 5 discusses details of our approach to enable polyhedral transformations of explicitly parallel programs. Section 6 presents a case study to illustrate the potential of our proposed approach. Section 7 and Section 8 summarize related work and our conclusions.

2. EXPLICITLY-PARALLEL PROGRAMS

The biggest difference between sequential programs and explicitly-parallel programs is that sequential programs specify a total execution order, whereas the execution of an explicitly-parallel program can be viewed as a partial order, which is traditionally referred to as a happens-before relation. Thus, we can mitigate conservative dependences arising from non-affine constructs by subtracting the complement of the happens-before relation from the conservative dependences, since dependences can only occur among statement instances that are ordered by the happens-before relation [29].

In this paper, we will restrict our attention to explicitly-parallel programs that satisfy the serial elision property i.e., the property that removal of all parallel constructs results in a sequential program that is a valid (albeit inefficient) implementation of the parallel program semantics. As a first step, we will focus on two kinds of loop-level parallel constructs, doall and doacross, both of which satisfy the serial elision property. We briefly summarize these constructs in the context of OpenMP [20], which is a widely used parallel programming model. The OpenMP standard already supports doall parallelism as in the form of parallel loops. In OpenMP 4.1, doacross parallelism is expected to be supported as extensions to the ordered construct [24, 21].

2.1 Doall parallelism

The OpenMP loop construct, “#pragma omp for”, is specified immediately before a for loop and indicates that the iterations of the loop have no happens-before dependence and hence can be executed in parallel. A barrier, i.e., an all-to-all synchronization point, is implied immediately after the parallel loop construct. The implicit barrier may be omitted if a nowait clause is specified on the loop construct. The reduction(op: list) clause, which is attached to a for loop construct, indicates that the parallel loop contains a reduction computation whose operator is specified by op (e.g., + or max) and the reduction variables are specified in list. Note that both scalar and array reductions are supported in OpenMP-FORTRAN while only scalar reductions are supported in OpenMP-C. For convenience, we assume the availability of array reductions in OpenMP-C (as proposed in [13]), when discussing examples in this paper. The aggregation for reduction is handled by the OpenMP runtime and the target variables specified in list have no other happens-before dependences from the compiler viewpoint.

The example in Section 3.2 shows an example usage of the OpenMP for loop construct, where the loops in lines 2, 8, 20 and 24 of Fig. 3 are annotated as doall loops.

2.2 Doacross parallelism

Doacross parallelism [10] is supported as a proposed extension to the OpenMP ordered construct. The ordered(n) clause, which is attached to for loop construct, indicates the availability of doacross parallelism in a set of n perfectly nested loops, “#pragma omp for ordered(n)”. The n loops form an n-dimensional iteration space in which an iteration instance can only depend on lexicographically earlier iterations (thereby satisfying the serial elision property). This pragma specifies the rank/dimensionality for the iteration vectors specified in the depend source/sink properties introduced below.

In order to specify cross-iteration dependences within the
3. MOTIVATING EXAMPLES

To motivate the proposed approach, we discuss two explicitly parallel kernels with data accesses that may be considered unanalyzable by some polyhedral frameworks. The first example uses C nested arrays, which may have unrestricted pointer aliasing in general. The second example uses non-affine linearized array subscripts, that would require a delinearization analysis to make them analyzable by polyhedral frameworks.

3.1 2-D Gauss Seidel Computation

The first example is a 2-dimensional 9 point Gauss Seidel computation. In Fig. 1, the statement S is enclosed in triply depend(type: vec) clauses. Here, type is source or sink and vec is an n-dimensional vector whose elements are simple expressions of the form, \(v_{ec} = (x_1 \pm c_1, x_2 \pm c_2, \ldots, x_n \pm c_n) \), where \(x_k \) is the k-th loop index and \(c_k \) is an integer constant (1 \(\leq \) \(k \) \(\leq \) n). The ordered depend(sink: vec) [depend(sink: vec) [...]] construct specifies a dependence sink and indicates a synchronization point that waits for the iterations specified by vec to reach the dependence sources. Note that vec for sink must be lexicographically smaller than the current iteration vector - i.e., \((x_1, x_2, \ldots, x_n)\). At runtime, a depend(sink: vec) clause becomes a no-op if its vec indicates a point outside the iteration space. The ordered depend(sink: vec) construct specifies a dependence source and indicates the point at which dependences on the current iteration vec = \((x_1, x_2, \ldots, x_n)\) are satisfied.

The example in Section 3.1 shows the usage of a doacross construct. In Fig. 1, the ordered(3) clause at line 2 specifies a 3-level doacross loop nest. Within the specified triply nested loops, the ordered depend construct in lines 6-10 indicates a dependence sink (i.e., synchronization point) that depends on nine dependence sources in iterations \((t, i, j-1), (t, i-1, j), (t, i-1, j+1), (t-1, i, j), (t-1, i, j-1), (t-1, i+1, j), (t-1, i+1, j-1), (t-1, i+1, j+1)\) and the ordered depend(sink: source) construct at line 16 specifies the location of the dependence source arising from current iteration \((t, i, j)\).

![Figure 1: Input 2-D Gauss Seidel computation](image1)

3.2 Particle Filter

The second example is particle filter from Rodinia benchmarks [8] and is shown in Fig. 3. The second loop nest in this kernel contains non-affine array subscripts \(\text{ind}[x*countOnes+y] \) and indirect array subscripts \([\text{ind}[x*countOnes+y]] \). We observe that these non-affine accesses do not pose an obstacle to recent polyhedral tools, since existing delinearization techniques [16] can be used to handle the \(\text{ind}[x*countOnes+y] \) case, and the fact that the array I is read-only in the kernel can be used to handle the \(\text{I}[\text{ind}[x*countOnes+y]] \) case. However, we would still like to discuss how the use of the parallel constructs can enable analysis and transformations, even in the absence of techniques such as delinearization.

Fig. 4 shows the transformed version of this kernel after loop fusion is performed. The legality of loop fusion is established by the fact that all variables that cross multiple loops have affine accesses on a single array. C’s unrestricted aliasing semantics for nested arrays can prevent a sound compiler analysis from detecting the exact cross-iteration dependences. However, the happens-before relations through explicit doacross parallelism can provide sufficient dependence information to enable loop skewing and tiling transformations to be performed so as to improve both locality and parallelism granularity, as shown in Fig. 2.

![Figure 2: Transformed 2-D Gauss Seidel computation](image2)

To illustrate the potential performance impact of these transformations, we timed three versions of this Gauss-Seidel computation when executed for 100 time steps on a 2000x2000 matrix. These timings were obtained on a quad eight-core 3.86GHz IBM Power7 system (32 cores total). The timings were as follows, and clearly illustrate the potential benefit of the transformations in Fig. 2:

- Original parallel version (Fig. 1) on 32 cores: 7.39 seconds
- Sequential version: 3.93 seconds
- Optimized parallel version (Fig. 2) on 32 cores: 0.32 seconds

3.3 GPU Implementation

The third example is a directly parallel version of the 2-D Gauss-Seidel computation. The second example is particle filter from Rodinia benchmarks [8] and is shown in Fig. 3. The second loop nest in this kernel contains non-affine array subscripts \(\text{ind}[x*countOnes+y] \) and indirect array subscripts \([\text{ind}[x*countOnes+y]] \). We observe that these non-affine accesses do not pose an obstacle to recent polyhedral tools, since existing delinearization techniques [16] can be used to handle the \(\text{ind}[x*countOnes+y] \) case, and the fact that the array I is read-only in the kernel can be used to handle the \(\text{I}[\text{ind}[x*countOnes+y]] \) case. However, we would still like to discuss how the use of the parallel constructs can enable analysis and transformations, even in the absence of techniques such as delinearization.

Fig. 4 shows the transformed version of this kernel after loop fusion is performed. The legality of loop fusion is established by the fact that all variables that cross multiple loops have affine accesses on a single array. C’s unrestricted aliasing semantics for nested arrays can prevent a sound compiler analysis from detecting the exact cross-iteration dependences. However, the happens-before relations through explicit doacross parallelism can provide sufficient dependence information to enable loop skewing and tiling transformations to be performed so as to improve both locality and parallelism granularity, as shown in Fig. 2.

![Figure 2: Transformed 2-D Gauss Seidel computation](image2)

To illustrate the potential performance impact of these transformations, we timed three versions of this Gauss-Seidel computation when executed for 100 time steps on a 2000x2000 matrix. These timings were obtained on a quad eight-core 3.86GHz IBM Power7 system (32 cores total). The timings were as follows, and clearly illustrate the potential benefit of the transformations in Fig. 2:

- Original parallel version (Fig. 1) on 32 cores: 7.39 seconds
- Sequential version: 3.93 seconds
- Optimized parallel version (Fig. 2) on 32 cores: 0.32 seconds

3.3 GPU Implementation

The second example is particle filter from Rodinia benchmarks [8] and is shown in Fig. 3. The second loop nest in this kernel contains non-affine array subscripts \(\text{ind}[x*countOnes+y] \) and indirect array subscripts \([\text{ind}[x*countOnes+y]] \). We observe that these non-affine accesses do not pose an obstacle to recent polyhedral tools, since existing delinearization techniques [16] can be used to handle the \(\text{ind}[x*countOnes+y] \) case, and the fact that the array I is read-only in the kernel can be used to handle the \(\text{I}[\text{ind}[x*countOnes+y]] \) case. However, we would still like to discuss how the use of the parallel constructs can enable analysis and transformations, even in the absence of techniques such as delinearization.

Fig. 4 shows the transformed version of this kernel after loop fusion is performed. The legality of loop fusion is established by the fact that all variables that cross multiple loops have affine accesses on a single array. C’s unrestricted aliasing semantics for nested arrays can prevent a sound compiler analysis from detecting the exact cross-iteration dependences. However, the happens-before relations through explicit doacross parallelism can provide sufficient dependence information to enable loop skewing and tiling transformations to be performed so as to improve both locality and parallelism granularity, as shown in Fig. 2.
Our overall approach is summarized in Fig. 5, which is being implemented as an extension to the PACE Compiler framework [1, 23], and consists of the following components:
1) Conversion from source code to AST (with support for doall and doacross parallel constructs), 2) AST Modifier (insertion of dummy variables), 3) AST to SCoP converter (with dummy variables), 4) Use of CANDL for conservative dependence analysis, 5) Use of Fourier-Motzkin elimination method to remove all dummy variables, 6) Identification of happens-before relations from the explicitly parallel constructs, and 7) Communication of the resulting set of dependences to a polyhedral transformation tool, such as PLuTo, and 8) Generation of transformed AST from optimized SCoP.

Based on a study of the Rodinia benchmarks [8], we have identified six common patterns in scientific applications that may be considered analyzable by some polyhedral frameworks:
1) Non-affine subscript expressions, 2) Indirect array subscripts, 3) Use of structures, 4) Calls to user-defined functions, 5) Non-affine loop bounds, and 6) Non-affine if conditions. Doerfert et.al. [11], performed a similar investigation recently on the applicability of Polly [15], a polyhedral framework for LLVM, on the SPEC 2000 benchmark suite and classified the root causes that prevented the application of polyhedral frameworks to these programs. We discuss two of the identified six common patterns (non-affine and indirect array subscripts) in Section 4.2 and Section 4.3. A more challenging limitation (unrestricted pointer aliasing) was already discussed in Section 3.1.

4. POLYHEDRAL MODEL AND ITS LIMITATIONS

In general, our interest is in using the polyhedral model as an intermediate representation for performing compiler transformations for improved performance. Polyhedral frameworks transform selected regions in the input program into Static Control Part (SCoP) [12, 14], and capture precise dependence information among statement instances in the form of a dependence polyhedron over the iterators and global parameters. If there are any unanalyzable constructs in the SCoP, then there may be obstacles in constructing the dependence polyhedron. The good news is that decades of research has led to a great expansion of programs that can be considered analyzable by polyhedral frameworks, thereby reducing the impact of these limitations. The main remaining constraints include restrictions on pointer usage in order to eliminate aliasing, on recursion, and on unstructured control flow.

Based on a study of the Rodinia benchmarks [8], we have identified six common patterns in scientific applications that may be considered analyzable by some polyhedral frameworks:
1) Non-affine subscript expressions, 2) Indirect array subscripts, 3) Use of structures, 4) Calls to user-defined functions, 5) Non-affine loop bounds, and 6) Non-affine if conditions. Doerfert et.al. [11], performed a similar investigation recently on the applicability of Polly [15], a polyhedral framework for LLVM, on the SPEC 2000 benchmark suite and classified the root causes that prevented the application of polyhedral frameworks to these programs. We discuss two of the identified six common patterns (non-affine and indirect array subscripts) in Section 4.2 and Section 4.3. A more challenging limitation (unrestricted pointer aliasing) was already discussed in Section 3.1.

4.1 Background on polyhedral model

The polyhedral model is a flexible representation for perfect and imperfect loop nests with static predictable control. Loop nests amenable to this algebraic representation are called Static Control parts (SCoPs), roughly defined as a set of consecutive statements such that loop bounds, conditionals and array accesses are affine functions over iterators and global parameters invariant to the SCoP.

Iteration domain, \(D_s \): A statement \(S \) enclosed by ‘m’ loops is represented as m-dimensional polytope, referred to as an iteration domain [4].
Access relation, A maps from statement instances to the array elements accessed by those statement instances [28]. The access relation can be an access function, in which case the mapping is described using affine constraints over loop iterators and global parameters. In our conservative approach using dummy variables, the access relation, for an array access with non-affine subscripts, represents a read or write access to the entire array.

Dependence Polyhedra, $P^{S,T}$: captures all possible dependences between statements S and T. Two instances X' and X_0, which belong to the iteration domains of statements S and T respectively, are said to be in dependence if they access the same array location and at least one of them is a write. Multiple dependence polyhedra may be required to capture all dependent instances between two statements, at least one for each pair of array references accessing the same array cell (scalars being a particular case of array). In the remainder of this section, we briefly summarize our approach to handling non-affine and indirect array subscripts in a polyhedral framework.

4.2 Non-affine Subscripts

Consider the kernel from Fig. 6, part of the hotspot program from the Rodinia benchmark suite [8]. In this program,

```c
1: int result[N], temp[N];
2: for (r = 0; r < row; r++)
3: for (c = 0; c < col; c++)
4: result[r*col+c] = temp[r*col+c]; // S
```

Figure 6: Part of hotspot kernel

$r*col+c$ is a non-affine subscript expression used to index into the result array. As mentioned earlier, linearization techniques can be used to make this example analyzable. However, our approach makes this example conservatively analyzable by introducing a dummy variable to capture the $r*col+c$ value, and later uses explicit parallelism to mitigate the conservative dependence analysis.

4.3 Indirect Array Subscripts

Now, consider the sparse matrix-vector multiplication kernel in Fig. 7. The statement S performs a non-affine read operation ($col[j]$) on array x. This particular access cannot be represented as an affine combination of iterators (i, j) and global variables (n). As we will see later in Section 5, our approach makes these indirect references analyzable by introducing a dummy variable to represent the subscript $col[j]$ of array x, and considers $col[j]$ itself as a read array reference of array col.

5. APPROACH DETAILS

This section presents the details of the proposed workflow, which was summarized in Section 3. For simplicity, our approach to handle conservative dependences is based on dummy variables that can work with any polyhedral tool that supports access functions; alternative approaches would have been possible if we had used access relations instead.

5.1 Terminology: Dummy vector

A dummy vector consists of dummy variables to represent non-affine subscript expressions and indirect array subscripts in the statement. These parameters are different from iterators and parameters in the polyhedral model. Each non-affine expression and indirect array subscript in a statement is uniquely associated with an element from the dummy vector corresponding to that statement. Now, each dynamic instance of a statement S is uniquely identified by its iteration vector (i^d), dummy vector (d^d) and parameter vector (p^d). The kernel in Fig. 8 contains two indirect array subscripts ($x[i][j], y[i][j]$) in the statement S. These subscripts are treated as dummy variables for that statement, and are replaced by the dummy variables, dmy_x and dmy_y, respectively for subsequent computation of dependences in Fig. 12.

5.2 Overall Algorithm

Algorithm 1 Overall algorithm for transformation of explicit parallel program with non-affine constructs

1: Input: SCoP
2: Let P be the set of dependence polyhedra obtained after elimination of the dummy variables from S.
3: Let P' be the set of dependence polyhedra after elimination of the dummy variables from P using FM.
4: Let P'' be the set of dependence polyhedra after reflection of happens-before relations from explicitly parallel constructs (C) in P'.
5: Forward SCoP and P'' to a polyhedral optimizer, such as PLuto [2].
6: Output: SCoP with optimized schedules

Algorithm 1 shows the overall approach at a high level, to handle non-affine constructs (step 2) and to use explicit parallelism to improve the accuracy of conservative dependences (step 4). In step 2, statements with non-affine expressions and indirect array subscripts are handled by the conservative approach with dummy variables while using exact dependence analysis techniques for regular statements. Finally, the resulting dependence polyhedra are passed to polyhedral optimizers to leverage existing loop transformations (step 5).

5.3 Conservative Approach

In this subsection, we summarize our conservative approach to compute dependence polyhedra for a SCoP with both regular statements, and statements with non-affine expressions or indirect array subscripts. In conservative approaches, the basic assumption for a compiler is that all memory accesses of an array in a statement can potentially conflict with other memory accesses of that array, or perhaps even memory accesses in other arrays (in the case of unrestricted aliasing). We use dummy variables instead of access relations for simplicity, since we use the Scoplib format when using CANDL.

We recently learned that CANDL also supports the OpenScop format which does supports access relations.
SCoP extraction. Then, we create affine inequalities from access ranges of these arrays, and eliminate these dummy variables from the SCoP using the FM elimination after the computation of conservative dependences. In case of indirect array subscripts, we associate the index arrays into the read arrays list of that statement after the computation of affine inequalities from access range of arrays. Algorithm 2 summarizes the steps involved in computing dependences in our conservative approach. For the kernel in Fig. 8, the indirect array subscripts in statement S are replaced by dummy variables dmy_{1}, dmy_{2} as part of pre-processing before SCoP extraction. Then, the affine inequalities for the dummy variables are created based on access range of array A and they are incorporated into iteration domain of the statement S, shown in Fig. 10. After the computation of conservative dependences, the dummy variables are eliminated from the iteration domain using the FM elimination method, shown in Fig. 11. First two columns of Fig. 12 respectively show the conservative dependences with dummy variables and dependences after elimination of dummy variables for kernel in Fig. 8.

5.4 Reflection of happens-before relations in dependence polyhedra

![Figure 8: Input kernel](image)

![Figure 9: Transformed kernel for better spatial locality](image)

![Figure 10: D^S: Domain of statement S](image)

![Figure 11: D^S: Domain of statement S after elimination](image)

<table>
<thead>
<tr>
<th>Conservative Dependences (F)</th>
<th>Dependences after elimination (F')</th>
<th>Happens-before relations (C)</th>
<th>Reflection ($F'' = F' \cap C$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i \leq i' - 1$</td>
<td>$j = dmy_1, i = dmy_2$</td>
<td>$C_{1}^{S \rightarrow S}: i = i'$</td>
<td>$F_{1}^{S \rightarrow S}: \phi$</td>
</tr>
<tr>
<td>$p_{1}^{S \rightarrow S}$</td>
<td>$0 \leq i, j \leq (N-1)$</td>
<td>$0 \leq i', j' \leq (N-1)$</td>
<td>$C_{2}^{S \rightarrow S}: i = i', j = j'$</td>
</tr>
<tr>
<td>$p_{2}^{S \rightarrow S}$</td>
<td>$0 \leq i, j \leq (N-1)$</td>
<td>$0 \leq i', j' \leq (N-1)$</td>
<td>$F_{2}^{S \rightarrow S}: 0 \leq i, j \leq (N-1)$</td>
</tr>
</tbody>
</table>

![Figure 12: Dependences (F) from conservative approach, Dependences (F') after elimination of additional parameters, Happens-before dependences from explicitly parallel constructs (C) and Dependences (F'') after reflection of C to F''](image)

Algorithm 2 Conservative Approach

1: **Input:** SCoP
2: for each statement S in SCoP do
3: for each array a in statement S that has non-affine expression/ indirect accesses in its subscripts do
4: for each subscript i in a that has non-affine expression/ indirect accesses do
5: Incorporate the affine inequalities, based on access range of array a for subscript i, into iteration domain of statement S
6: if subscript i has indirect array subscripts then
7: Associate index arrays into read arrays list of statement S
8: end if
9: end for
10: end for
11: end for
12: Forward SCoP to dependence analyzer
13: **Output:** Set of dependence polyhedra (F'')
The set of dependence polyhedra in the source program is represented as \(P = \{ P_d^{S_i \rightarrow S_j} \} \) there exists a dependence between source statement \(S_i \) and target statement \(S_j \) at depth \(d \). Here depth represents the loop nest level that carries the data dependence. The doall and doacross parallel constructs are tied to specific loops and impose constraints on the dependence polyhedra whose source statement \(S_i \) and target statement \(S_j \) are enclosed in the specified loop and depth \(d \) is matched with the specified loop’s nest level. As with dependence polyhedra, let \(C_d^{S_i \rightarrow S_j} \) denote a constraint on possible dependences between source \(S_i \) and target \(S_j \) at depth \(d \). This is imposed by doall/doacross constructs and \(x_i^{S_j} / x_k^{S_j} \) denote the k-th loop indexes of \(S_i / S_j \) respectively. A doall construct specified at depth \(d \) always imposes a constraint \(c_d^{S_i \rightarrow S_j} \) such that \(x_i^{S_j} = x_i^{S_j} \) for \(1 \leq k \leq d \). On the other hand, a doacross construct with ordered \((n) \) - i.e., \(n \)-level doacross parallelism - at depth \(d \) may impose multiple constraints \(c_d^{S_i \rightarrow S_j}, c_d^{S_i \rightarrow S_j}, \ldots, c_{d+n-1}^{S_i \rightarrow S_j} \), which correspond to the depend\((\text{sink: } \text{vec}) \) clauses within the loop body. Let depend\((\text{sink: } (x_i^{S_j}, \ldots, x_m^{S_j}, x_m^{S_j} - c_m, \ldots, x_{d+n-1}^{S_j} - c_{d+n-1}) \text{) denote a depend clause that specifies a cross-iteration dependence at depth \(m \geq d \). The corresponding constraint is \(C_m^{S_i \rightarrow S_j} \) such that \(x_i^{S_j} = x_i^{S_j} \) for \(1 \leq k \leq m - 1 \) and \(x_i^{S_j} = x_i^{S_j} - c_i \) for \(m \leq k \leq d + n - 1 \). For instance, Fig. 8 has two constraints \(C_i^{S_i \rightarrow S_j} \), which is imposed by the doall construct at the outermost level, and \(C_2^{S_i \rightarrow S_j} \), which is imposed by the doacross construct at the second level, as shown in Fig. 12.

Algorithm 3 shows how to compute the set of dependence polyhedra \(P^o \) after reflecting the constraints due to the above explicit parallel constructs (i.e., set of constraints \(C \)), where the input \(P \) is the set of conservative dependence polyhedra computed in Section 5.3. For each polyhedron \(P_d^{S_i \rightarrow S_j} \) in \(P \) (line 2), it searches for the matched constraint \(C_d^{S_i \rightarrow S_j} \) in \(C \) (lines 3–9). If such a \(C_d^{S_i \rightarrow S_j} \) is found, the modified dependence polyhedron \(P_{d}^{S_i \rightarrow S_j} \) is computed as \(P_d^{S_i \rightarrow S_j} = P_d^{S_i \rightarrow S_j} \cap C_d^{S_i \rightarrow S_j} \) (line 7). Otherwise, the dependence polyhedron \(P_d^{S_i \rightarrow S_j} \) is left unchanged (line 11). The Reflection column of Fig. 12 shows the dependence polyhedra for the kernel in Fig. 8 after reflection. After the reflection of explicit parallelism onto dependences, the loop interchange transformation is performed for better data-locality and the transformed program is shown in Fig. 9.

Algorithm 3 Reflection of happens-before relations from explicitly parallel constructs

1. **Input**: conservative dependences \(P \) and constraints \(C \)
2. for each dependence polyhedron \(P_d^{S_i \rightarrow S_j} \) in \(P \) do
3. found := false;
4. for each constraint \(C_d^{S_i \rightarrow S_j} \) in \(C \) do
5. if \(S_i = S_k \) & \(S_j = S_k \) & \(d = e \) then
6. found := true;
7. \(P_d^{S_i \rightarrow S_j} = P_d^{S_i \rightarrow S_j} \cap C_d^{S_i \rightarrow S_j} \);
8. end if
9. end for
10. if found = false then
11. \(P_d^{S_i \rightarrow S_j} = P_d^{S_i \rightarrow S_j} \);
12. end if
13. Add the reflected polyhedron \(P_d^{S_i \rightarrow S_j} \) to \(P^o \);
14. end for
15. **Output**: dependence polyhedra after reflection \(P^o \)

6. **CASE STUDY**

For all 18 benchmarks in the Rodinia suite, Table 1 summarizes 1) constructs used in the benchmarks that limit the use of some polyhedral frameworks, and 2) potential opportunities for polyhedral loop transformations that can be enabled by our proposed approach based on exploiting explicit parallelism. The constructs in 1) include non-affine array subscripts (NAS), indirect array accesses (I), use of structs (S), and use of function calls (F). For instance, the hotspot benchmark has non-affine array subscripts (NAS), but can benefit from loop fusion, skewing, tiling, and doacross transformations (by leveraging explicit parallelism to identify happens-before dependences). The table also shows that non-affine subscripts and function calls are common in this benchmark suite, while indirect array accesses and structs are found in a few benchmarks. In the remainder of this section, we illustrate an optimizing transformations on one of the Rodinia benchmarks, LU Decomposition. Another Rodinia benchmark, Particle Filter, was discussed earlier in Section 3.2.

The kernel of LU Decomposition (LUD) calculates solutions to a set of linear equations and Fig. 13 shows a part of LUD kernel. In Fig. 13, the \(j \) and \(k \) loops are parallel and the \(k \) loop is parallel with a reduction on array \(a \) (using an extension to OpenMP to specify array reductions in C [13, 23]). In the access pattern \(k*\text{size}+j \) of array \(a \) in statement \(S_l \), each iteration of loop \(k \) results in accessing an element distant from size elements from current location. As a result, it exhibits poor spatial locality. In this scenario, the interchange of loops \(j, k \) preserves semantics and improves spatial locality. The code after performing loop permutation on the input kernel is shown in Fig. 14.

7. **RELATED WORK**

In this section, we discuss related approaches in applying polyhedral transformations to programs with non-affine static parts, as well as related work on polyhedral analysis of parallel programs. These approaches are broadly classi-
fied into compile-time approaches, run-time approaches and a combination of run-time and compile-time techniques.

Since non-affine static parts in programs are not directly representable in the polyhedral model, the compile-time approaches use conservative dependence analysis techniques to perform legal transformations on these programs. In general, conservative approaches are over-approximation techniques, and consider a large superset of existing dependences. As a result, only a subset of legal transformations can be applied, and profitable legal transformations that may yield better performance may be bypassed. There has been a significant effort to handle certain subsets of non-affine accesses, including polynomial accesses [19] in the polyhedral model, and indirect array subscripts [18] for array dependence analysis and loop transformations.

There has also been a large effort devoted to extending the polyhedral model to support non-affine extensions. The approach in [22] introduced techniques to perform dependence analysis in the case of nonlinear expressions in array subscripts and loop bounds. In this approach, the nonlinear constraints are not omitted, as in the generic conservative approach. It uses uninterpreted function symbols to represent non-linear expressions, and the proposed dependence analysis technique generates dependence relations by approximating with affine dependence relations, where as in our approach, conservative dependences are pruned after reflection of happens-before relations from explicit parallel constructs.

Run-time approaches such as the inspector/executor strategy [5, 27, 26] have also gained significant attention to determine data reordering and better communication schedules at run-time. In these approaches, the inspector code, generated from the program, is executed at run-time and gathers information about non-affine static parts, such as index expressions. Then, the executor part of strategy performs optimizations based on the run-time information from inspector code. Recently, this inspector/executor transformation strategy was integrated into the polyhedral framework [27] and combined with regular loop transformations to optimize programs with non-affine static parts. But, this work was restricted to only indirect array subscripts accessing read-only data, which is only one source of non-affine computations.

There have been other run-time approaches to handle real world programs with the polyhedral representation. The approach in [11] has shown that most of the issues stem from overly conservative approximation of dependences through static analyses of real world programs. The approach in [11] proposed a speculative polyhedral optimization technique, a variant of just-in-time polyhedral optimization, and focused on two specific sources of false dependences (possible aliasing and non-affine subscript expressions). The proposed approach handles them by tuning the region of code not amenable to the polyhedral optimizations with the run-time information and speculatively specialized functions. In the process of auto tuning, it infers the common values of parameters, and generates the optimized variants of those regions of codes along with original region of code. These optimized variants of code will get executed when enabled by run-time parameters. Our approach differs from and is complementary to the approach in [11] in two ways: 1) We don’t rely on auto tuning capabilities to improve the precision of dependences over non-linear array subscript expressions but we rely on explicit parallel directives to improve the precision of dependences instead, and 2) Our approach is completely static where the other approach has to keep several variants of original code for different values of parameters for run-time execution of program.

Recent work [25] has also shown the applicability of polyhedral optimizations using POLLY (an extension of the LLVM compiler) on over 50 real-world programs from different domains. They have proposed extensions to POLLY to recog-

<table>
<thead>
<tr>
<th>Kernel</th>
<th>NAS</th>
<th>I</th>
<th>S</th>
<th>F</th>
<th>Transformations</th>
</tr>
</thead>
<tbody>
<tr>
<td>b+ tree</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>perm, fuse, vect</td>
</tr>
<tr>
<td>backprop</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>doacross, fuse, skew, tile, vect</td>
</tr>
<tr>
<td>bfs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>perm, fuse, vect</td>
</tr>
<tr>
<td>cfl</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>fuse, vect</td>
</tr>
<tr>
<td>heartwall</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>perm, vect</td>
</tr>
<tr>
<td>hotspot</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>doacross, skew, fuse, perm</td>
</tr>
<tr>
<td>kmean</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>fuse, vect</td>
</tr>
<tr>
<td>lavaMD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>perm, vect</td>
</tr>
<tr>
<td>leukocyte</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>doacross, skew, tile</td>
</tr>
<tr>
<td>lud</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>fuse, vect</td>
</tr>
<tr>
<td>nummergpu</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>perm, vect</td>
</tr>
<tr>
<td>myocyte</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>doacross, skew, perm</td>
</tr>
<tr>
<td>nn</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>fuse, vect</td>
</tr>
<tr>
<td>nw</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>doacross, skew, tile</td>
</tr>
<tr>
<td>particle filter</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>path finder</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>srad</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>streamcluster</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Limitations and possible transformations in Rodinia benchmarks (NAS: non-affine array subscript, I: indirect array access, S: structure, F: function, and perm/fuse/skew/tile/doacross/vect: loop permutation/fusion/skewing/tiling/doacross parallelism/vectorization)
nize and model multi-dimensional arrays using the polyhe-
dral model, instead of the default approach of modeling them
as indirect pointer accesses. In addition, the authors have
extended the polyhedral modeling capability in POLLY to
another generalized polyhedral model using semi-algebraic
sets and real algebra [25]. This formalism is proposed to
deal with polynomials in array subscript expressions along
with affine expressions. Quantifier elimination has been
used as a tool to remove the quantifiers generated while
computing data dependences among array accesses involv-
ing polynomial expressions over loop iterators and param-
eters. Since the authors handle polynomial expressions in
array subscripts, a sufficient condition was proposed to re-
duce dependence analysis problem for polynomial array sub-
script expressions to affine conditions. Our approach differs
from their approach [25] in two ways: 1) The implementa-
tion of our approach is in a high-level AST, in which multi-
dimensional array accesses are explicit and need not be re-
constructed via delinearization (as in LLVM), and 2) Our
approach does not have the worst case doubly exponential
complexity of modeling polyhedra over semi-algebraic sets,
as in [25], and can use explicit parallelism to handle more
non-affine cases (such as indirect accesses) than their ap-
proach.

There has been a recent work on PENCIL [3], a platform-
neutral compute intermediate language, aimed at facilitat-
ing automatic parallelization and optimization for execution
on multi-threaded SIMD hardware for multiple high per-
formance domain specific languages (DSLs). The language
provides extensions and directives that allow users to supply
information about dependences and memory access patterns
to help the optimizer to perform optimizations better than
in case of conservative optimizations. A key difference be-
tween our approach and the PENCIL approach is that we
are interested in leveraging happens-before information from
programs written in general-purpose explicitly parallel lan-
guages, such as OpenMP and X10, whereas PENCIL is fo-
cused on supporting DSLs in which certain coding rules are
enforced related to pointer aliasing, recursion, unstructured
control flow, etc.

A number of papers addressed the problem of data-flow
analysis of explicitly parallel programs, including extensions
of array data-flow analysis to data-parallel and/or task-parallel
programs [9], and adaptation of array data-flow analysis to
the X10 programs with finish/async parallelism [29]. In
these approaches, the happens-before relations are first an-
alyzed and the data-flow is computed based on the partial
order imposed by happen-before relations. On the other
hand, our approach first overestimates dependences based
on the sequential order and subtracts the complement of the
happen-before relations from the conservative dependences.
While the work in [29] identifies potential data races, our
approach does not treat potential data races as errors or
dependences. Further, the main focus of our work is on
transformations of explicitly parallel programs for improved
performance, whereas the work in [9] and [29] is only focused
on analysis.

8. CONCLUSIONS

This work is motivated by the observation that software
with explicit parallelism is on the rise, and that explicit
parallelism can be used to enable larger sets of polyhedral
transformations (by mitigating conservative dependences),
compared to what might have been possible if the input
program was sequential. We introduced an approach that
reflects happens-before constraints from explicitly parallel
constructs in the dependence polyhedra to help mitigate
conservative dependence analysis. In our approach, we sub-
tract the complement of the happens-before relation from the
conservative dependences, since dependences can only
occur among statement instances that are ordered by the
happens-before relation. The updated set of dependence can
then be passed on to a polyhedral transformation tool, such
as PLuTo, to enable transformation of explicitly parallel pro-
grams. Our approach to modeling non-affine constructs is
based on access functions, which are used through the intro-
duction of dummy variables.

To motivate our approach, we studied 18 explicitly-parallel
OpenMP benchmarks from the Rodinia benchmark suite,
and found that these benchmarks use six classes of non-affine
constructs that are commonly found in parallel scientific
applications: 1) Non-affine subscript expressions, 2) Indirect
array subscripts, 3) Use of structs, 4) Calls to user-defined
functions, 5) Non-affine loop bounds, and 6) Non-affine if
conditions. While there are known techniques from past
work to enable automatic analysis for some of these non-
affine constructs in polyhedral frameworks, we show that
the use of explicit parallelism can enable a larger set of poly-
heiral transformations for some of these programs (due to
conservative dependences), compared to what might have
been possible if the input program was sequential.

For future work, we plan to explore how to incorporate
additional explicit parallel constructs (such as barriers) into
dependence polyhedra for increased precision.

9. REFERENCES

[2] PLuTo: A polyhedral automatic parallelizer and
locality optimizer for multicore.
J. Inoke, T. Grosser, G. Kouveli, A. Kravets,
A. Lokhmotov, C. Nugteren, F. Waters, and A. F.
Donaldson. PENCIL: Towards a Platform-Neutral
Compute Intermediate Language for DSLs. Corr,
abs/1302.5586, 2013.
J. Ramanujam, A. Rountev, and P. Sadayappan.
Automatic Data Movement and Computation
Mapping for Multi-level Parallel Architectures with
Explicitly Managed Dependencies. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’08, pages
1–10, New York, NY, USA, 2008. ACM.
Irregular Shared-memory Applications for
Distributed-memory Systems. In Proceedings of the
Eleventh ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’06,
pages 119–128, New York, NY, USA, 2006. ACM.
[6] U. Bondhugula, M. Baskaran, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan.
Automatic Transformations for
Communication-minimized Parallelization and
Locality Optimization in the Polyhedral Model. In

