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Motivations

Data locality

@ Interest in any kind of technique that can produce data locality
@ Combining several types

o Loop transformations
o Layout transformations
e Data placement on NUMA architectures
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Motivations

Data locality

@ Interest in any kind of technique that can produce data locality
@ Combining several types

o Loop transformations
o Layout transformations
e Data placement on NUMA architectures

Automatic polyhedral parallelizers

@ Current tools do not consider the integration of control, data flow, memory mapping
and placement optimizations
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Example

@ Pluto!: for multicore CPUs

— Optimizations using loop transformations only

1U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic polyhedral program optimization system. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), 2008.
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@ Pluto': for multicore CPUs
— Optimizations using loop transformations only
@ 16 cores: 3x

@ 36 cores: 2.6x
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How to provide more data locality thanks to additional transpositions and NUMA
placements?
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NUMA architectures

Traffic contention and remote accesses issues

Can be dealt with:

@ At the programming level using an
API (Libnuma, hwloc)

@ Using extended programming
languages?

@ At execution time using environment
variables (GOMP_CPU_AFFINITY,
KMP_AFFINITY) or runtime solutions
(e.g, MPC?)

NUMA Node 3 ""NUMA Node 4

2p. Muddukrishna, P. A. Jonsson, and M. Brorsson. Locality-Aware Task Scheduling and Data Distribution for OpenMP Programs on NUMA Systems
and Manycore Processors. Scientific Programming, 2015.

3m. Pérache, H. Hourdren, R. Namyst. MPC: A Unified Parallel Runtime for Clusters of NUMA Machines. Euro-Par 2008.
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NUMA architectures

Traffic contention and remote accesses issues

Can be dealt with:

@ At the programming level using an
API (Libnuma, hwloc)

@ Using extended programming
languages?

@ At execution time using environment
variables (GOMP_CPU_AFFINITY,
KMP_AFFINITY) or runtime solutions
(e.g, MPC?)

NUMA Node 3 ""NUMA Node 4

What is the most convenient way to explore NUMA placement decisions at
compile-time?

2p. Muddukrishna, P. A. Jonsson, and M. Brorsson. Locality-Aware Task Scheduling and Data Distribution for OpenMP Programs on NUMA Systems
and Manycore Processors. Scientific Programming, 2015.

3m. Pérache, H. Hourdren, R. Namyst. MPC: A Unified Parallel Runtime for Clusters of NUMA Machines. Euro-Par 2008.
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Roadmap

Goals

1. Transpositions and NUMA placements in Pluto outputs for more locality

2. A convenient way to explore optimizations decisions at compile-time
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Roadmap
Goals

1. Transpositions and NUMA placements in Pluto outputs for more locality

2. A convenient way to explore optimizations decisions at compile-time J

Our solution
@ Proposing a parallel intermediate language: lvie
— Manipulate meta-programs for space exploration
— Makes prototyping easier than using unified polyhedral approach
— Future use beyond SCoPs
@ Prototyping an extension of Pluto tool flow involving the PIL

— Case studies on PolyBench programs: Gemver, Gesummv, Covariance, Gemm

Data Locality for SCoPs on NUMA 4/25
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About our PIL: lvie

Main idea — Manipulate arrays in parallel programs
@ Transpositions: data transposition, index permutation

@ NUMA placements: interleaved allocation, replications
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About our PIL: lvie

Main idea — Manipulate arrays in parallel programs
@ Transpositions: data transposition, index permutation

@ NUMA placements: interleaved allocation, replications

Design
o Declarative/functional
@ Decoupled manipulation of array characteristics
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— Possible interfacing with islpy for affine transformations
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About our PIL: lvie

Main idea — Manipulate arrays in parallel programs
@ Transpositions: data transposition, index permutation

@ NUMA placements: interleaved allocation, replications

Design
o Declarative/functional
@ Decoupled manipulation of array characteristics
@ Physical and virtual memory abstraction
@ Meta-language embedded in Python

— Possible interfacing with islpy for affine transformations

What lvie is not

@ A new programming language/domain-specific language
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Implementation

F

OpenMP C code

—

lvie code
’
[Modified IVIE code]/ Meta-programming

|
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Implementation No more control flow optimization after Pluto!

F

OpenMP C code

—

lvie code
’
[Modified IVIE code]/ Meta-programming

|
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Loop abstraction

[Declaration of iterator types: parallel or sequential]

~

with i as piter:
with j as siter:
A[i1 03] = k1 (A[i1 03], wilil, viljl, w2[il, v2[jD)

[ [

[Output variable} [Arguments: array elements}

@ Implicit loop bounds
@ Anonymous functions performing element-wise operations
@ Accumulations made explicit

@ Arrays follow either physical or virtual memory abstraction

Conclusion

[e]e]
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Array declarations
Using default declaration construct

Declaration of array A

A = array(2, double, [N,N]) J

Parameters
@ Number of dimensions
o Type

@ Dimension sizes

@ Used when generating code from
input source

Experimental Results
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Input C code

int A[N][N];
int BIN][N];
int C[N][N];

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
C[i1[31 = A[i1[31 + BLil[3];

Output

A = array(2, int, [N,N])
B = array(2, int, [N,N])
C = array(2, int, [N,N])

with i as siter:
with j as siter:

Cclil[j] = £(A[i1[31, BLi1[iD)

Data Locality for SCoPs on NUMA
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Array declarations
Via data replication
Replication of array A

A = array(2, double, [N,N])
Ar = replicate(A) J

@ Replication of read-only arrays

@ Ar inherits all characteristics of A
o Shape
o Content

@ Used when meta-programming

Experimental Results Conclusion
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Replicating A and B

A = array(2, int, [N,N])
B = array(2, int, [N,N])
C = array(2, int, [N,N])

Ar = replicate(4A)
Br = replicate(B)

Resulting C code

int A[N][N], B[N][N], C[NI[NI;
int Ar[N][N];
int Br[N]([N];

for (i = 0; i < N; i++) {
memcpy (Ar[i], A[il, N * sizeof(int));
memcpy (Br[il, B[il, N * sizeof(int));

Data Locality for SCoPs on NUMA
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Array declarations
Via explicit transposition

Transposition of array A

A = array(2, double, [N,N])
Atp = transpose(A, 1, 2) J

Parameters
@ Array of origin

@ Dimension ranks to be permuted

@ Atp inherits from A

o Content
e Transposed shape

@ Atp is physical

@ Used when meta-programming

Experimental Results
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Transposing A

A = array(2, int, [N,NI)
Atp = transpose(A, 1, 2)

with i as siter:
with j as siter:
.= £(Atplil (51, ...

Conclusion

Resulting C code

int A[N][N];
int Atp[N][N];
/* Initialization of A */

for (i = 0; i < N; i++)
for (j = 05 j < N3 j++)
Atpl[i][3] = A[31[i];
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
... = Atpl[il[j];

Data Locality for SCoPs on NUMA
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Array declarations

Via virtual index permutation

Transposition of array A

A = array(2, double, [N,N])
Atv = vtranspose(A, 1, 2) J
Parameters

@ Array of origin

@ Dimension ranks to be permuted

@ Atv inherits from A

o Content
o Transposed shape

Atv is virtual

Used when meta-programming

Experimental Results
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Transposing A

A = array(2, int, [N,N])
Atv = vtranspose(4, 1, 2)

with i as siter:
with j as siter:
= £(Atv[E1 03], ...

Conclusion

Resulting C code

int A[N][N];
/* Initialization of A */
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
.= A[1[41;

Data Locality for SCoPs on NUMA
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Array declarations
For concise abstraction of several arrays

Abstracting arrays A and Ar

A = array(2, double, [N,N])
A = array(2, double, [N,N]) Ar = replicate(A)
Ar = replicate(A)
As = select([({it} <= val), Al,
As = select([({it} <= val), Al, [({it} > val), Ar])
[({it} > val), Ar])

with i as piter:
with j as siter:

Parameters .= £(As[i]1 G

@ Pairs of condition and arrays

int A[N][N];

int Ar[N][N];

. /* Initialization of A and Ar */
@ As is virtual

o Allows explicit control in #pragr.na omp ;?arallel. for schedule(...)
for (i = 0; i < Nj; i++)

partitioning if (i <= val)
@ For NUMA management for FJ:AEJJ[J;.N; J+®
if (i > val)
for (j = 0; j < N; j++)
. = Ar[il[jl;

Data Locality for SCoPs on NUMA 12 /25
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Data placement on NUMA

@ Constructs based on API functions available in libnuma

Interleaved allocation Allocation on node
A = numa_alloc_interleaved(size) A = numa_alloc_onnode(size, node_id)
A .map_interleaved (1) J A .map_onnode (node_id) )

Data Locality for SCoPs on NUMA 13/25
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Experimental setup
Machine Intel Xeon E5-2697 v4 (Broadwell), 4 nodes, 36 cores
Compilation gcc -03 -march=native (enables vectorization)
Thread binding OMP_PROC_BIND

Default Pluto options  Tiling for L1 cache, parallelization, vectorization
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Default Pluto options  Tiling for L1 cache, parallelization, vectorization

Possible loop fusion heuristics:
@ No loop fusion (no fuse)
@ Maximum fusion (max fuse)

@ In-between fusion (smart fuse)

Data Locality for SCoPs on NUMA 14/ 25



Introduction Prototype implementation Experimental Results Conclusion
0000 0000000000 ©000000000 00

Experimental setup

Machine Intel Xeon E5-2697 v4 (Broadwell), 4 nodes, 36 cores
Compilation gcc -03 -march=native (enables vectorization)
Thread binding OMP_PROC_BIND

Default Pluto options  Tiling for L1 cache, parallelization, vectorization

Possible loop fusion heuristics:
@ No loop fusion (no fuse)
@ Maximum fusion (max fuse)

@ In-between fusion (smart fuse)

Different program versions:

Default Pluto output (default)

Pluto output + NUMA only (NUMA)

Pluto output + transposition only (Layout)

Pluto output + NUMA + transposition (NUMA-Layout)
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Gemver

Code snippet
for (i = 0; i < _PB_N; i++)
for (j = 0; j < _PB_N; j++)
ATi1[5] = A[i1[3] + uilil * v1[j] + uw2[il * v2[j];

for (i = 0; i < _PB_N; i++)
for (j = 0; j < _PB_N; j++)
x[i] = x[i] + beta * A[jI1[i] * y[jl;
J* .. */
for (i = 0; i < _PB_N; i++)
for (j = 0; j < _PB_N; j++)
wli]l = w[i] + alpha * A[il[j] * x[jl;

Interesting properties
@ Permutation profitable with loop fusions
@ Several choices: need to find best permutation
@ May loose some parallelism depending on chosen loop fusion
@ Bandwidth-bound

Conclusion

[e]e]

Data Locality for SCoPs on NUMA
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Gemver
Meta-programs example: smart fuse vs no fuse

A = array(2, DATA_TYPE, [n, n])
ul = array(l, DATA_TYPE, [n])
vl = array(l, DATA_TYPE, [n])

A_v = vtranspose(A, 1, 2)

ul_1 = replicate(ul)
ul_2 = replicate(ul)
ul_3 = replicate(ul)

A.map_interleaved(1)
ul.map_onnode (0)
ul_1.map_onnode (1)
ul_2.map_onnode(2)
ul_3.map_onnode(3)

select ([0 <= {it} <= 8, uil,
[9 <= {it} <= 17, ui_1],
/*...x/)

ul_s =

with i as siter:
with j as siter:
A_v[il[j] = init(Q)

Experimental Results Conclusion
0000000000 oo

with t2 as cpiter:
with t3 as siter:
with t4 as siter:
with t5 as siter:
A[t4] [t5] = £3(A[t4][t5], ul_s([t4],
vi[t5], u2_s[t4],
v2[t5])

with t2 as piter:
with t3 as siter:
with t4 as siter:
with t5 as siter:
x[t5] = £7(x[t5], A[t4][t5], yl[t4])
.

with t2 as cpiter:
with t3 as siter:
with t4 as siter:
with t5 as siter:

A[t4] [t5] = £3(A[t4] [t5], ul_s[t4],
v1i[t5], u2_s[t4],
v2[t5])

x[t5] = £7(x[t5], Al[t4][t5], yl[t4])

.
16 / 25
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Gemver
Different Pluto versions with no loop fusion

Pluto with no fuse. Speedup over Default on 1 core (0.50 s)

30 T T T
22—
4 ==

o5 - e
16 m—
36 SNy

20 - ;

V" More speed-up with NUMA
X Much less speed-up with transposition
% No added value with thread binding
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Gemver
Different Pluto versions with smart loop fusion

Pluto with smart fuse. Speedup over Default on 1 core (0.56 s)

30 T T T
22—
4 ==

o5 - e
16 m—
36 SNy

V" More speed-up with NUMA
V' More speed-up with transposition
% No added value with thread binding
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Gesummv

Pluto with no fuse. Speedups over Default on 1 core (2.44 s).
35 T T
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Gesummv

Pluto with no fuse. Speedups over Default on 1 core (2.44 s).

35

35

Experimental Results Conclusion

O0000e0000 [e]e]

Pluto with max fuse. Speedups over Default on 1 core (2.44 s).

2
4 e
8
6
6

30 -

25 -

20
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Gemm
Different naive versions

Interesting property

# Default declarations

C = array(2, DATA_TYPE, [ni, njl)
A = array(2, DATA_TYPE, [ni, nk])
B = array(2, DATA_TYPE, [nk, njl)

@ Column-major access to B

Modifications # Meta—programmed declaration
@ Transposed initialization of B B sy o 2

o NUMA placement: interleaved # Initializations

. ith i iter:
allocation only R ;‘Sazls:ier,

B_v[il[j] = init(O
# ... other initializations

with t2 as piter:
with t3 as siter:
with t4 as siter:
with t5 as siter:
with t7 as siter:
with t6 as siter:
Cclts]l[t6] = £9(C[t5][t6],
Alt5] [t7], BLt6] [t7])

Data Locality for SCoPs on NUMA 20/ 25
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Different naive versions

100

80

60

40

20

o

Naive. Speedups sequential version (2.25s).

Experimental Results
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22/

W =

DO ®» AN
2

U

V" Some speed-up with transposition but loop interchange is better

%X No speed-up with NUMA

Data Locality for SCoPs on NUMA
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Gemm
Different Pluto versions

Pluto’s solution: loop interchange
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Gemm
Different Pluto versions

Pluto’s solution: loop interchange

Pluto. Speedups over Default on 1 core (0.54 s).

35 T T T T

2

4
30 - 8 5

16

36 SNy
25 - 9

%X No speed-up with NUMA
X Transposition makes things worse

Data Locality for SCoPs on NUMA 22/25
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Covariance

Naive. Speedups sequential version (2.75 s).

35

30

25

20

Experimental Results

000000000 [e]e]

Pluto. Speedups over Default on 1 core (0.46 s).

Data Locality for SCoPs on NUMA
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Balance sheet

Advantages
@ NUMA placements help bandwidth-bound programs
@ More speed-up with transpositions

@ New opportunities with transpositions

— Wider space exploration for combining different types of optimizations
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Balance sheet

Advantages
@ NUMA placements help bandwidth-bound programs
@ More speed-up with transpositions

@ New opportunities with transpositions

— Wider space exploration for combining different types of optimizations

Disadvantages
@ Multiple conditional branching

o Copy overheads

Conclusion
[ 1o}

Ne-mere—control-flow-optimization-after Plute! Ok, we definitely still need some.
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Some future work

Deeper investigation
o For case studies
@ More experiments (other SCoPS, non-SCoPs)
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Some future work

Deeper investigation
o For case studies
@ More experiments (other SCoPS, non-SCoPs)

PIL design and implementation
@ Reuvisit or extend some constructs
@ Interfacing with islpy

@ Memory and control flow optimizations: more integrated composition

Polyhedral analysis to help:
@ determine interleaving granularity
@ generate different schedules for transpositions

A parallel intermediate language in Pluto’s framework?
@ Pure post-processing is difficult: Pluto outputs may be (very) complex.
@ Ad hoc implementation probably the best solution for Pluto.
— But intermediate language necessary for space exploration of optimizations
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