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Motivations

Data locality

Interest in any kind of technique that can produce data locality

Combining several types
Loop transformations
Layout transformations
Data placement on NUMA architectures

Automatic polyhedral parallelizers

Current tools do not consider the integration of control, data flow, memory mapping
and placement optimizations
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Example

Pluto1: for multicore CPUs

→ Optimizations using loop transformations only

16 cores: 3x

36 cores: 2.6x

How to provide more data locality thanks to additional transpositions and NUMA
placements?

1U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic polyhedral program optimization system. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), 2008.
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NUMA architectures
Traffic contention and remote accesses issues

Can be dealt with:

At the programming level using an
API (Libnuma, hwloc)

Using extended programming
languages2

At execution time using environment
variables (GOMP CPU AFFINITY,

KMP AFFINITY) or runtime solutions
(e.g, MPC3)

What is the most convenient way to explore NUMA placement decisions at
compile-time?

2A. Muddukrishna, P. A. Jonsson, and M. Brorsson. Locality-Aware Task Scheduling and Data Distribution for OpenMP Programs on NUMA Systems
and Manycore Processors. Scientific Programming, 2015.

3M. Pérache, H. Hourdren, R. Namyst. MPC: A Unified Parallel Runtime for Clusters of NUMA Machines. Euro-Par 2008.
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Roadmap

Goals

1. Transpositions and NUMA placements in Pluto outputs for more locality

2. A convenient way to explore optimizations decisions at compile-time

Our solution

Proposing a parallel intermediate language: Ivie

→ Manipulate meta-programs for space exploration

→ Makes prototyping easier than using unified polyhedral approach

→ Future use beyond SCoPs

Prototyping an extension of Pluto tool flow involving the PIL

→ Case studies on PolyBench programs: Gemver, Gesummv, Covariance, Gemm
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About our PIL: Ivie

Main idea → Manipulate arrays in parallel programs

Transpositions: data transposition, index permutation

NUMA placements: interleaved allocation, replications

Design

Declarative/functional

Decoupled manipulation of array characteristics

Physical and virtual memory abstraction

Meta-language embedded in Python

→ Possible interfacing with islpy for affine transformations

What Ivie is not

A new programming language/domain-specific language
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Implementation No more control flow optimization after Pluto!

C code

Pluto

OpenMP C code

OpenMP C-to-Ivie code generation

Ivie code

Meta-programmingModified Ivie code

Ivie-to-OpenMP C code generation

Final code
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Loop abstraction

with i as piter:
with j as siter:

A[i][j] = k1(A[i][j], u1[i], v1[j], u2[i], v2[j])

Declaration of iterator types: parallel or sequential

Arguments: array elementsOutput variable

Implicit loop bounds

Anonymous functions performing element-wise operations

Accumulations made explicit

Arrays follow either physical or virtual memory abstraction
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Array declarations
Using default declaration construct

Declaration of array A

A = array(2, double, [N,N])

Parameters

Number of dimensions

Type

Dimension sizes

Used when generating code from
input source

Input C code

int A[N][N];
int B[N][N];
int C[N][N];

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

C[i][j] = A[i][j] + B[i][j];

Output

A = array(2, int, [N,N])
B = array(2, int, [N,N])
C = array(2, int, [N,N])

with i as siter:
with j as siter:

C[i][j] = f(A[i][j], B[i][j])

Data Locality for SCoPs on NUMA 8 / 25
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Array declarations
Via data replication

Replication of array A

A = array(2, double, [N,N])
Ar = replicate(A)

Replication of read-only arrays

Ar inherits all characteristics of A

Shape
Content

Used when meta-programming

Replicating A and B

A = array(2, int, [N,N])
B = array(2, int, [N,N])
C = array(2, int, [N,N])

Ar = replicate(A)
Br = replicate(B)

Resulting C code

int A[N][N], B[N][N], C[N][N];
int Ar[N][N];
int Br[N][N];

for (i = 0; i < N; i++) {
memcpy(Ar[i], A[i], N * sizeof(int));
memcpy(Br[i], B[i], N * sizeof(int));

}

Data Locality for SCoPs on NUMA 9 / 25
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Array declarations
Via explicit transposition

Transposition of array A

A = array(2, double, [N,N])
Atp = transpose(A, 1, 2)

Parameters

Array of origin

Dimension ranks to be permuted

Atp inherits from A

Content
Transposed shape

Atp is physical

Used when meta-programming

Transposing A

A = array(2, int, [N,N])
Atp = transpose(A, 1, 2)

with i as siter:
with j as siter:

... = f(Atp[i][j], ...)

Resulting C code

int A[N][N];
int Atp[N][N];
/* Initialization of A */

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

Atp[i][j] = A[j][i];

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

... = Atp[i][j];
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Array declarations
Via virtual index permutation

Transposition of array A

A = array(2, double, [N,N])
Atv = vtranspose(A, 1, 2)

Parameters

Array of origin

Dimension ranks to be permuted

Atv inherits from A

Content
Transposed shape

Atv is virtual

Used when meta-programming

Transposing A

A = array(2, int, [N,N])
Atv = vtranspose(A, 1, 2)

with i as siter:
with j as siter:

... = f(Atv[i][j], ...)

Resulting C code

int A[N][N];

/* Initialization of A */

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

... = A[j][i];
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Array declarations
For concise abstraction of several arrays

Abstracting arrays A and Ar

A = array(2, double, [N,N])
Ar = replicate(A)

As = select([({it} <= val), A],
[({it} > val), Ar])

Parameters

Pairs of condition and arrays

As is virtual

Allows explicit control in
partitioning

For NUMA management

A = array(2, double, [N,N])
Ar = replicate(A)

As = select([({it} <= val), A],
[({it} > val), Ar])

with i as piter:
with j as siter:

... = f(As[i][j])

int A[N][N];
int Ar[N][N];
/* Initialization of A and Ar */

#pragma omp parallel for schedule(...)
for (i = 0; i < N; i++)

if (i <= val)
for (j = 0; j < N; j++)

... = A[i][j];
if (i > val)

for (j = 0; j < N; j++)
... = Ar[i][j];

Data Locality for SCoPs on NUMA 12 / 25
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Data placement on NUMA

Constructs based on API functions available in libnuma

Interleaved allocation
A = numa_alloc_interleaved(size)

A.map_interleaved(1)

Allocation on node
A = numa_alloc_onnode(size, node_id)

A.map_onnode(node_id)

Data Locality for SCoPs on NUMA 13 / 25
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Experimental setup

Machine Intel Xeon E5-2697 v4 (Broadwell), 4 nodes, 36 cores

Compilation gcc -03 -march=native (enables vectorization)

Thread binding OMP PROC BIND

Default Pluto options Tiling for L1 cache, parallelization, vectorization

Possible loop fusion heuristics:

No loop fusion (no fuse)

Maximum fusion (max fuse)

In-between fusion (smart fuse)

Different program versions:

Default Pluto output (default)

Pluto output + NUMA only (NUMA)

Pluto output + transposition only (Layout)

Pluto output + NUMA + transposition (NUMA-Layout)
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Gemver

Code snippet
for (i = 0; i < _PB_N; i++)

for (j = 0; j < _PB_N; j++)
A[i][j] = A[i][j] + u1[i] * v1[j] + u2[i] * v2[j];

for (i = 0; i < _PB_N; i++)
for (j = 0; j < _PB_N; j++)

x[i] = x[i] + beta * A[j][i] * y[j];
/* ... */
for (i = 0; i < _PB_N; i++)

for (j = 0; j < _PB_N; j++)
w[i] = w[i] + alpha * A[i][j] * x[j];

Interesting properties

Permutation profitable with loop fusions

Several choices: need to find best permutation

May loose some parallelism depending on chosen loop fusion

Bandwidth-bound

Data Locality for SCoPs on NUMA 15 / 25
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Gemver
Meta-programs example: smart fuse vs no fuse

A = array(2, DATA_TYPE, [n, n])
u1 = array(1, DATA_TYPE, [n])
v1 = array(1, DATA_TYPE, [n])
A_v = vtranspose(A, 1, 2)
u1_1 = replicate(u1)
u1_2 = replicate(u1)
u1_3 = replicate(u1)

A.map_interleaved(1)
u1.map_onnode(0)
u1_1.map_onnode(1)
u1_2.map_onnode(2)
u1_3.map_onnode(3)

u1_s = select([0 <= {it} <= 8, u1],
[9 <= {it} <= 17, u1_1],
/*...*/)

with i as siter:
with j as siter:

A_v[i][j] = init()

No fuse

with t2 as cpiter:
with t3 as siter:

with t4 as siter:
with t5 as siter:

A[t4][t5] = f3(A[t4][t5], u1_s[t4],
v1[t5], u2_s[t4],
v2[t5])

with t2 as piter:
with t3 as siter:

with t4 as siter:
with t5 as siter:

x[t5] = f7(x[t5], A[t4][t5], y[t4])

Smart fuse

with t2 as cpiter:
with t3 as siter:

with t4 as siter:
with t5 as siter:

A[t4][t5] = f3(A[t4][t5], u1_s[t4],
v1[t5], u2_s[t4],
v2[t5])

x[t5] = f7(x[t5], A[t4][t5], y[t4])

Data Locality for SCoPs on NUMA 16 / 25
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Gemver
Different Pluto versions with no loop fusion

X More speed-up with NUMA

× Much less speed-up with transposition

× No added value with thread binding
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Gemver
Different Pluto versions with smart loop fusion

X More speed-up with NUMA

X More speed-up with transposition

× No added value with thread binding
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Gesummv
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Gesummv
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Gemm
Different naive versions

Interesting property

Column-major access to B

Modifications

Transposed initialization of B

NUMA placement: interleaved
allocation only

# Default declarations
C = array(2, DATA_TYPE, [ni, nj])
A = array(2, DATA_TYPE, [ni, nk])
B = array(2, DATA_TYPE, [nk, nj])

# Meta-programmed declaration
B_v = vtranspose(B, 1, 2)

# Initializations
with i as siter:

with j as siter:
B_v[i][j] = init()

# ... other initializations

with t2 as piter:
with t3 as siter:

with t4 as siter:
with t5 as siter:

with t7 as siter:
with t6 as siter:

C[t5][t6] = f9(C[t5][t6],
A[t5][t7], B[t6][t7])

Data Locality for SCoPs on NUMA 20 / 25
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Gemm
Different naive versions

X Some speed-up with transposition but loop interchange is better

× No speed-up with NUMA
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Gemm
Different Pluto versions

Pluto’s solution: loop interchange

× No speed-up with NUMA
× Transposition makes things worse
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Covariance
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Balance sheet

Advantages

NUMA placements help bandwidth-bound programs

More speed-up with transpositions

New opportunities with transpositions

→ Wider space exploration for combining different types of optimizations

Disadvantages

Multiple conditional branching

Copy overheads

No more control flow optimization after Pluto! Ok, we definitely still need some.
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Some future work

Deeper investigation

For case studies

More experiments (other SCoPS, non-SCoPs)

PIL design and implementation

Revisit or extend some constructs

Interfacing with islpy

Memory and control flow optimizations: more integrated composition

Polyhedral analysis to help:

determine interleaving granularity

generate different schedules for transpositions

A parallel intermediate language in Pluto’s framework?

Pure post-processing is difficult: Pluto outputs may be (very) complex.

Ad hoc implementation probably the best solution for Pluto.

→ But intermediate language necessary for space exploration of optimizations
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