Load Balancing with Polygonal Partitions

ANIKET SHIVAM
PRIYANKA RAVI
ALEXANDER V. VEIDENBAUM
ALEXANDRU NICOLAU
UNIVERSITY OF CALIFORNIA, IRVINE, USA

ROSARIO CAMMAROTA
QUALCOMM RESEARCH, SAN DIEGO, USA
Traditional Tiling vs Polygonal Tiling

- Single shape of tiles. (not necessarily the size)
- Improves data locality for loop-nests with uniform reuse pattern.

- Multiple tile sizes and shapes based on reuse pattern.
- Improves data locality for loop-nests with non-uniform reuse pattern.

Formulation of the Problem

- **Walk-through example:**

```
for ( i = -N; i <= N; i++)
    for ( j = -N; j <= N; j++)
        X[i,j] = Y[i,i+j+3] + Y[i+j,j];
```

- **Representation of the references to characterize the reuse pattern:**

Reference $\alpha = (i, i+j+3)$

Reference $\beta = (i+j, j)$

$\Gamma_{i,i+j+3} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} I + \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ and $\Gamma_{i+j,j} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} I + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
Formulation of the Problem

• Deriving the other iteration reusing the same data:

\[\Gamma_\alpha = \Gamma_\beta \iff R_\alpha I_\alpha + r_\alpha = R_\beta I_\beta + r_\beta \]

• Temporal reuse relation:

\[R_\beta^{-1} R_\alpha I_\alpha + R_\beta^{-1} (r_\alpha - r_\beta) = I_\beta \iff T_{\alpha\beta} I_\alpha + t_{\alpha\beta} = I_\beta \]

\[T' = (T, t) \]

• For the example:

\[T = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \text{ and } t = \begin{pmatrix} -3 \\ 3 \end{pmatrix} \]

• To find iteration reusing same data as \((2, 1) \):

\[\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} -3 \\ 3 \end{pmatrix} = \begin{pmatrix} -4 \\ 6 \end{pmatrix} \]
Partitioning the iteration space (\mathcal{D}) in four sets using two references:

- \mathcal{D}_1 iterations share the data used by Γ_α.
- \mathcal{D}_2 iterations share the data used by Γ_β.
- \mathcal{C} iterations reference data using Γ_α and Γ_β which are referenced in other iterations.
- \mathcal{L} iterations have no reuse.

Hence, $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \mathcal{C} \cup \mathcal{L}$.
After kth steps of the algorithm:

- **\mathcal{DC}_k partitions**: \mathcal{D}_1 iterations that link to $k-1$ \mathcal{C} iterations and at the end link to a \mathcal{D}_2 iteration.

- **\mathcal{C}_k partitions**: The remaining \mathcal{C} iterations that are linked to themselves by \mathcal{T}^k.
Partitioning Technique (contd.)

- Halting condition for the algorithm:
 a) If the entire iteration space (D) is completely partitioned. ($\mathcal{T}^k = I$)
 b) If k_{max} is too high then find an optimal value of k to protect gained speedup.

First strategy:

a) Scan the first partition of each type.

b) Generate subscripts for other partitions of similar type using reuse relation: I, $T(I)$, $T^2(I)$, etc.

```plaintext
for (i = -N; i <= -4; i++) {
    for (j = MAX(-N+3, -i-N-3); j <= -i-N-1; j++) {
        X[i][j] = Y[i][i+j+3] + Y[i+j][j];
        X[-j-3][i+j+3] = Y[-j-3][i+3] + Y[i][i+j+3];
        X[-i-j-6][i+3] = Y[-i-j-6][-j] + Y[-j-3][i+3];
        X[-i-6][-j] = Y[-i-6][-i-j-3] + Y[-i-j-6][-j];
        X[j-3][-i-j-3] = Y[j-3][-i-3] + Y[-i-6][-i-j-3];
    }
}
```

Index calculation for DC_4^0 using reuse relation (T').
Second strategy:

Reduce high control statement overhead by repartitioning the partitions to reduce boundary check overheads.

Wave-front Execution of the Polygonal Partitions
Case 1: Two Dimensional Non-Uniform Reuse Pattern

for (i = -N; i <= N; i++)
 for (j = -N; j <= N; j++)
 \(X[i,j] = Y[i,i+j+3] + Y[i+j,j]; \)

Loop-Nest

Reuse Pattern

Polygonal Partitions for Two Dimensional Non-Uniform Reuse Pattern \((k_{\text{max}} = 6)\)
Irregular Scaling of Partitions

| Size | $|\mathcal{DC}_4|$ | $|\mathcal{C}_6|$ | Ratio ($|\mathcal{C}_6|/|\mathcal{DC}_4|$) |
|-------|-----------------|-----------------|-----------------|
| 128 | 1860 | 47250 | 26 |
| 256 | 3780 | 192786 | 52 |
| 512 | 7620 | 778770 | 103 |
| 1024 | 15300 | 3130386 | 205 |
| 2048 | 30660 | 12552210 | 410 |
| 4096 | 61380 | 50270226 | 820 |

Iteration counts in \mathcal{C}_6 and \mathcal{DC}_4 partitions

<table>
<thead>
<tr>
<th>Partition</th>
<th>Approx. Scaling Factor w.r.t. Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{C}_6</td>
<td>1x</td>
</tr>
<tr>
<td>\mathcal{DC}_1, \mathcal{DC}_4</td>
<td>0.5x</td>
</tr>
<tr>
<td>\mathcal{DC}_3, \mathcal{DC}_1</td>
<td>0x</td>
</tr>
</tbody>
</table>
Re-Tiling of Polygonal Partitions

- **Load Balancing**
 - C_6 partitions execution time dominates the kernel execution time.

- **Scalability**
 - Scheduling each type of partition on different thread, restricts parallelism.

- **Solution for both problems:**
 - Re-Tiling the partitions with rectangular tiling.
 - Executing all partitions type one-by-one.
 - Dynamically scheduling re-tiles for a single partition.
Re-Tiling Partitions with Reuse

- \(L\) partitions don't have any reuse.
 - Hence, all iterations can execute in parallel.
- Scheduling partitions based on size.

```c
#pragma omp parallel for schedule(dynamic)
Loop-Nest : Re-tiled C6 partitions
#pragma omp parallel for schedule(dynamic)
Loop-Nest : Re-tiled DC4 partitions
#pragma omp parallel for schedule(dynamic)
Loop-Nest : Re-tiled DC3 partitions
#pragma omp parallel for schedule(dynamic)
Loop-Nest : Re-tiled DC1 partitions
#pragma omp parallel for schedule(dynamic)
Loop-Nest : Re-tiled C1 partitions
#pragma omp parallel for
Loop-Nest : \(L\) partitions
```
Code Sample after Re-Tiling

```c
lbp=ceild(-N-31,32);
ubp=-1;
#pragma omp parallel for schedule(dynamic) private(lbv,ubv,t2,t3,t4)
for (t1 = lbp; t1 <= ubp; t1++) {
    for (t2 = 0; t2 <= min(floord(N-4,32),-t1-1); t2++) {
        for (t3 = max(-N,32*t1); t3 <= min(32*t1+31,-32*t2-4); t3++) {
            lbv = 32*t2;
            ubv = min(32*t2+31,-t3-4);
            for (t4 = lbv; t4 <= ubv; t4++) {
                x[t3][t4] = y[t3][t3+t4+3] + y[t3+t4][t4];
                x[-t4 -3][t3+t4 +3] = y[-t4 -3][t3 +3] + y[t3][t3+t4+3];
                x[-t3-t4-6][t3+3] = y[-t3-t4-6][-t4] + y[-t4 -3][ t3 +3];
                x[-t3-6][-t4] = y[-t3 -6][-t3-t4 -3] + y[-t3-t4-6][-t4];
                x[t4-3][-t3-t4-3] = y[t4-3][-t3-3] + y[-t3 -6][t3-t4 -3];
                x[t3+t4][-t3-3] = y[t3+t4][t4] + y[t4-3][-t3-3];
            }
        }
    }
}
```

Re-Tiled parallel code for C_6 partition
Experimental Results – Case Study 1

Experimental Setup:
Intel Xeon Phi Knights Landing CPU 7210 @ 1.30GHz (64 cores, 1MB L1-cache, 32MB L2-cache) – Quadrant-Cache configuration.
Affinity settings:
OMP_PROC_BIND = spread and OMP_PLACES = threads
Case 2: One Dimensional Non-Uniform Reuse Pattern

for (i = -N; i <= N; i++)
 for (j = -N; j <= N; j++)
 X[i][j] = Y[i][j] + Y[i][i+j+N];
Re-Tiling with Wavefront Execution

- Smaller partitions are executed as C type partition.
- Partitions are split to reduce control statement overhead.
- Wavefronts don’t hinder reuse.
Summary

- Polygonal tiling technique is **not constrained** to either the shape or the size of tiles.

- The shapes and sizes are **governed by the reuse pattern** of the loop-nests.

- **Re-Tiling** provides **load-balancing** and **scalability** to the Polygonal Tiles.

- Up to 2x speedup over rectangular tiled code.