TC-CIM: Empowering Tensor Comprehensions for Computing In Memory

Andi Drebes¹ Lorenzo Chelini²,³ Oleksandr Zinenko⁴
Albert Cohen⁴ Henk Corporeal² Tobias Grosser⁵
Kanishkan Vadivel² Nicolas Vasilache⁴

¹Inria and École Normale Supérieure ²TU Eindhoven ³IBM Research Zurich
⁴Google ⁵ETH Zurich

01/22/2020
Goal: Reliably detect operations for efficient offloading
Detecting Operations for Accelerators

- High-Level Specification
- Optimizing Compiler
- Optimized Code for Accelerator

- Goal: Reliably detect operations for efficient offloading
- At which stage?
- On which representation?
- Create reusable infrastructure
Von-Neumann Bottleneck

Host
CPU

Main Memory
Von-Neumann Bottleneck

Main Memory

Host
CPU

Drebes et al. – TC-CIM: Empowering Tensor Comprehensions for Computing In Memory
Von-Neumann Bottleneck

Host
CPU

Accelerator

Cache

Main Memory
Von-Neumann Bottleneck

Diagram showing the Von-Neumann Bottleneck with Host CPU, Accelerator, and Main Memory.
Compute In Memory (CIM)

- Interweave Computation and Storage
- Example: Memristor-based Architecture from MNEMOSENE project (https://www.mnemosene.eu)

Drebes et al. – TC-CIM: Empowering Tensor Comprehensions for Computing In Memory
Compute In Memory (CIM)

- Interweave Computation and Storage
- Example: Memristor-based Architecture from MNEMOSENE project (https://www.mnemosene.eu)
- High energy efficiency and throughput with fixed functions (e.g., matrix multiplication)
Goal: Reliably detect operations for efficient offloading
- At which stage?
- On which representation?
- Create reusable infrastructure
Detecting Accelerated Operations for CIM

- Goal: Reliably detect operations for efficient offloading
- At which stage?
- On which representation?
- Create reusable infrastructure
Tensor Comprehensions

Math-like notation
- Expresses operations on tensors
- Only information needed to define operation unambiguously
- Compiler infers shapes and iteration domains
Tensor Comprehensions

Math-like notation

- Expresses operations on tensors
- Only information needed to define operation unambiguously
- Compiler infers shapes and iteration domains

Example:

```python
def mv(float(M,K) A, float(K) x) -> (C)
{
    C(i) +=! A(i,k) * x(k)
}
```
Tensor Comprehensions: Compilation

Drebes et al. – TC-CIM: Empowering Tensor Comprehensions for Computing In Memory
Integration of Loop Tactics

Tensor Comprehensions → TC lang → Halide IR

Polyhedral Transformations
isl Schedule Tree → Loop Tactics
Pattern detection and marking

Tactics backend
ISO C99
isl AST

Drebes et al. – TC-CIM: Empowering Tensor Comprehensions for Computing In Memory
Matching Example: Matrix Multiplications

```python
def kernel(
    float(M,N) A,
    float(N,K) B) -> (C)
{
    ...  
    C(i,k) +=!
    A(i, n) * B(n, k)
    ...
}
```
Matching Example: Matrix Multiplications

```
def kernel(
    float(M, N) A,
    float(N, K) B) -> (C)
{
    \ldots
    C(i, k) +=!
    A(i, n) * B(n, k)
    \ldots
}
```
Matching Example: Matrix Multiplications

```
def kernel(  
    float(M,N) A,  
    float(N,K) B) -> (C)  
{  
    ...  
    C(i,k) *=!  
    A(i, n) * B(n, k)  
    ...  
}
```
Matching Example: Matrix Multiplications

def kernel(M, N, K)
 float(A) -> float(B) -> float(C)

 C(i, k) = 0
 A(i, n) * B(n, k)

 for i, n, k in range(M, N, K)
 C(i, k) += A(i, n) * B(n, k)
Matching Example: Matrix Multiplications

def kernel(
 float(M,N) A,
 float(N,K) B) -> (C)
{
 ...,
 C(i,k) +=!
 A(i, n) * B(n, k)
 ...,
}
Matching Example: Matrix Multiplications

```
def kernel(
    float(M,N) A,
    float(N,K) B) -> (C)
{
    ...;
    C(i,k) +=
        A(i, n) * B(n, k)
    ...;
}
```
Matching Example: Matrix Multiplications

```python
def kernel(
    float(M, N) A,
    float(N, K) B) -> (C)
{
    ...  
    C(i, k) +=!
    A(i, n) * B(n, k)
    ...
}
```
Matching Example: Matrix Multiplications

def kernel(
 float(M,N) A,
 float(N,K) B) -> (C)
{
 ...
 C(i,k) *=!
 A(i, n) * B(n, k)
 ...
}

void kernel(int K, int M, int N,
 float* C,
 float* A,
 float* B)
{
 ...
 cimblas.gemm(K, M, N,
 C, A, B,
 ...);
 ...
}
Loop Tactics: Tree Matchers

Tree Matcher defines pattern for subtree and captures nodes

```c
schedule_node body;
schedule_node initBody;
schedule_node schedule;

auto matcher =
  band(schedule,
    sequence(
      filter(initBody,
        hasGemmInitPattern,
        leaf()),
      filter(body,
        hasGemmPattern,
        leaf())));
```
Access Relation Matcher: Matches tensor accesses

```cpp
class AccessRelationMatcher {
public:
    AccessRelationMatcher(
        auto _i = placeholder(),
        auto _j = placeholder(),
        auto _k = placeholder(),
        auto _A = arrayPlaceholder(),
        auto _B = arrayPlaceholder(),
        auto _C = arrayPlaceholder();
    
    auto reads = /* get read accesses */;
    auto writes = /* get write accesses */;
    auto mRead = allOf(
        access(_C, _i, _j),
        access(_A, _i, _k),
        access(_B, _k, _j));

    auto mWrite = allOf(access(_C, _i, _j));
    return match(reads, mRead).size() == 1 &&
           match(writes, mWrite).size() == 1;
};
```
Access Relation Matcher: Matches tensor accesses

```cpp
auto hasGemmPattern = [&](schedule_node node) {
    auto _i = placeholder();
    auto _j = placeholder();
    auto _k = placeholder();
    auto _A = arrayPlaceholder();
    auto _B = arrayPlaceholder();
    auto _C = arrayPlaceholder();

    auto reads = /* get read accesses */;
    auto writes = /* get write accesses */;
    auto mRead = allOf(
        access(_C, _i, _j),
        access(_A, _i, _k),
        access(_B, _k, _j));

    auto mWrite = all0f(access(_C, _i, _j));
    return match(reads, mRead).size() == 1 &&
           match(writes, mWrite).size() == 1;
};
```

Additionally match leaf expressions
Loop Tactics: Tree Builders

Tree Builder generates Subtree after Transformation

```cpp
auto builder =
    mark([&]() { return marker(); },
    band([&]() { return schedule.getSchedule(); },
    sequence(
        filter([&]() { return initBody.getFilter(); }),
        filter([&]() { return body.getFilter(); })))));
```
Tree Builder generates Subtree after Transformation

```cpp
auto builder =
    mark([&]() { return marker(); },
    band([&]() { return schedule.getSchedule(); },
    sequence(
        filter([&]() { return initBody.getFilter(); }),
        filter([&]() { return body.getFilter(); ))));
```
Tree Builder generates Subtree after Transformation

```cpp
auto builder =
mark([&]() { return marker(); },
band([&]() { return schedule.getSchedule(); },
sequence(
filter([&]() { return initBody.getFilter(); }),
filter([&]() { return body.getFilter(); })))));
```
Tree Builder generates Subtree after Transformation

```cpp
auto builder =
    mark([&](){ return marker() },
    band([&](){ return schedule.getSchedule() },
    sequence(
        filter([&](){ return initBody.getFilter() })),
        filter([&](){ return body.getFilter() })));```

Drebes et al. – TC-CIM: Empowering Tensor Comprehensions for Computing In Memory
Experimental Methodology

Implemented Matchers

- Matrix-matrix multiplications
- Matrix-vector multiplications
Experimental Methodology

Implemented Matchers
- Matrix-matrix multiplications
- Matrix-vector multiplications

Benchmarks
- Benchmarks: mm, mv, batchMM, 3mm, 4cmm, mlp3
Experimental Methodology

Implemented Matchers
- Matrix-matrix multiplications
- Matrix-vector multiplications

Benchmarks
- Benchmarks: mm, mv, batchMM, 3mm, 4cmm, mlp3

Static Impact
- Percentage of detected patterns in the code
- Test robustness against prior Transposition / Tiling
Experimental Methodology

Implemented Matchers
- Matrix-matrix multiplications
- Matrix-vector multiplications

Benchmarks
- Benchmarks: mm, mv, batchMM, 3mm, 4cmm, mlp3

Static Impact
- Percentage of detected patterns in the code
- Test robustness against prior Transposition / Tiling

Dynamic Impact
- Dynamic instruction count unoptimized vs. optimized version
Detected Patterns in the Code

- TC-CIM-tiled
- TC-CIM-not tiled
- Oracle

[Bar chart with data for different tensor operations such as mm-nn, mm-nt, mm-tn, mv-nn, mv-nt, batchMM, 3mm, 4cmm, mlp3]
Breakdown of Dynamic Host CPU Instructions

No offloading (host CPU only)

With offloading
Normalized to #instructions without offloading

Categories:
- MemRead
- MemWrite
- Host-ALU ops

Sample data points:
- mm-nn
- mm-nt
- mm-tn
- mv-nn
- mv-nt
- batchMM
- 3mm
- 4cmn
- mlp3
Matching after Affine Scheduling without Rescheduling:

- Leverages enabling transformations (e.g., fusion, tiling)
- Initial schedule as canonical form (e.g., permutability, band coalescing)
- No feedback for transformations (e.g., no architecture-specific tiling, fusion decisions, etc.)
- Complexity of matchers rises with prior transformations
Matching after Affine Scheduling without Rescheduling:

- Leverages enabling transformations (e.g., fusion, tiling)
- Initial schedule as canonical form (e.g., permutability, band coalescing)
- No feedback for transformations (e.g., no architecture-specific tiling, fusion decisions, etc.)
- Complexity of matchers rises with prior transformations

Matching earlier (at higher level of abstraction)

- More high-level information for matchers
- Simpler matchers & builders
- Less / no benefits from affine transformations
Summary and Future Work

Summary

▶ TC-CIM: Compilation flow for (CIM) accelerators
▶ Integration of Loop Tactics into Tensor Comprehensions
▶ Reliable detection + significant dynamic impact

Future Work

▶ Explore positioning in the pipeline
▶ More complex matchers: fusion / minimizing data transfers
▶ Matching in MLIR (e.g., raise from lower-level dialects to high-level dialects)
Summary and Future Work

Summary

▶ TC-CIM: Compilation flow for (CIM) accelerators
▶ Integration of Loop Tactics into Tensor Comprehensions
▶ Reliable detection + significant dynamic impact

Future Work

▶ Explore positioning in the pipeline
▶ More complex matchers: fusion / minimizing data transfers
▶ Matching in MLIR (e.g., raise from lower-level dialects to high-level dialects)