Generating SIMD Instructions for Cerebras CS-1 using Polyhedral Compilation Techniques

Sven Verdoolaege Manjunath Kudlur Rob Schreiber Harinath Kamepalli

Cerebras Systems

January 22, 2020
Outline

1. Target Architecture
2. Code Generation
3. SIMD Code Generation
4. Conclusion
Outline

1. Target Architecture
2. Code Generation
3. SIMD Code Generation
4. Conclusion
Cerebras CS-1

Largest chip ever built

- 46,225 mm² silicon
- 1.2 trillion transistors
- 400,000 AI optimized cores
- 18 Gigabytes of On-chip Memory
- 9 PByte/s memory bandwidth
- 100 Pbit/s fabric bandwidth
- TSMC 16nm process
Interesting Features

- Dataflow scheduling in hardware
 - Triggered by data
 - Filters out sparse zero data
 - Skips unnecessary processing

Powerful SIMD Engine

- Performs some number of operations per cycle
- Mimics normalized loop nest of depth at most four
 ⇒ removes overhead of software managed loops
Sparse Tensor Communication

Tensor

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>0</td>
<td>13</td>
</tr>
</tbody>
</table>

Dense Communication

send

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Sparse Communication**: break up tensor into chunks (e.g., rows) and only send non-zero entry + position in chunk + end-of-chunk.
Sparse Tensor Communication

Tensor

Dense Communication

Sparse Communication

- break up tensor into chunks (e.g., rows)
- only send
 - non-zero entry + position in chunk
 - end-of-chunk

send

0 42 0 0 0 0 57 0 13
Interesting Features

- Dataflow scheduling in hardware
 - Triggered by data
 - Filters out sparse zero data
 - Skips unnecessary processing
Interesting Features

- Dataflow scheduling in hardware
 - Triggered by data
 - Filters out sparse zero data
 - Skips unnecessary processing

- Powerful SIMD Engine
 - Performs *some number* of operations per cycle
 - Mimics normalized loop nest of depth at most four
 - Removes overhead of software managed loops
SIMD Instructions

Loop code:

```c
handle(uint16_t index, half data) {
    for (int c3 = 0; c3 <= 4; c3 += 1)
        for (int c4 = 0; c4 <= 4; c4 += 1)
            dx_local[2 * dy_index_0 + c3][2 * index + c4] +=
            (data) * (W_local[0][c3][c4]);
}
```
SIMD Instructions

Loop code:

```c
handle(uint16_t index, half data) {
    for (int c3 = 0; c3 <= 4; c3 += 1)
        for (int c4 = 0; c4 <= 4; c4 += 1)
            dx_local[2 * dy_index_0 + c3][2 * index + c4] +=
                (data) * (W_local[0][c3][c4]);
}
```

SIMD instruction:

```c
handle(uint16_t index, half data) {
    set_base_address(dx, &dx_local[2 * dy_index_0][2 * index]);
    invoke_simd(fmach, dx, W, data, index);
}
```

```c
void main() {
    configure(/* 5,5; W_local: i,j -> 0,i,j; dx_local: i,j -> i,j */);
    set_base_address(W, &W_local[0][0][0]);
}
```
Outline

1 Target Architecture
2 Code Generation
3 SIMD Code Generation
4 Conclusion
Code Generation Overview

LAIR code

DTG codegen

C-level code

LAIR map

LAIR map contains information in isl (V. 2010) notation about the size of the target rectangle of PEs, how input and output tensors are communicated, and where computations are performed.
Code Generation Overview

LAIR code

 DTG codegen

 C-level code

LAIR map

LAIR

⇒ DSL written by hand or extracted from TensorFlow (Abadi et al. 2016)
LAIR Example

```c
lair matvec<T=float16>(M, N): T W[M][N], T x[N] -> T y[M] {
    all (i, j) in (M, N)
        y[i] += W[i][j] * x[j]
}
```

lair node
- defines one or more output tensors in terms of input tensors
- each statement has zero-based rectangular set of instances
- LAIR is single assignment (at tensor level)
- all accesses are affine (not piecewise, not quasi-affine)
- each tensor in a statement is accessed through single index expression

Other nodes combine and/or specialize lair nodes
⇒ e.g., $M = 32$ and $N = 16$
Code Generation Overview

LAIR code

DTG codegen

C-level code

LAIR map

LAIR

⇒ DSL written by hand or extracted from TensorFlow (Abadi et al. 2016)
Code Generation Overview

LAIR code

\[\xrightarrow{\text{DTG codegen}} \] C-level code

LAIR map

LAIR

⇒ DSL written by hand or extracted from TensorFlow (Abadi et al. 2016)

LAIR map contains information in isl (V. 2010) notation about

- the size of the target rectangle of PEs
- how input and output tensors are communicated
- where computations are performed
LAIR Map Example

```cpp
lair matvec<T= float16>(M, N): T W[M][N], T x[N] -> T y[M] {
    all (i, j) in (M, N)
    y[i] += W[i][j] * x[j]
}
```

Mapping of 32×16 matrix vector multiplication to 4×4 PEs.

- **size:** `{ PE[4, 4] }`
- **compute_map:** `{ ff[i, j] -> PE[j//4, i//8] }`
- **iport_map:** `{ x[i=0:15] -> [PE[i//4, -1] -> index[i%4]] }`
- **oport_map:** `{ y[i=0:31] -> [PE[4, i//8] -> index[i%8]] }`
Task Graph Construction

Code generation consists of

- Parse LAIR and LAIR map
- Construct task graph
- Detect SIMD opportunities
- Write out code
Task Graph Construction

Code generation consists of

- Parse LAIR and LAIR map
- Construct task graph
- Detect SIMD opportunities
- Write out code

Task graph construction: split LAIR specification into

- communication tasks
- computation tasks
 Two types:
 - react to incoming tensor element
 - read in entire tensor or operate on local memory
Outline

1. Target Architecture
2. Code Generation
3. SIMD Code Generation
4. Conclusion
SIMD Code Generation

⇒ detect sets of computation instances that can be performed by SIMD instructions
⇒ determine
 ▶ supported instruction
 ▶ “fixed” instance set sizes
 ▶ accesses of the form

\[\text{offset + linear in iterators} \]

“fixed” sizes: may depend on PE, but not on tensor element
Otherwise, configuration needs to be performed before each invocation
SIMD Code Generation

⇒ detect sets of computation instances that can be performed by SIMD instructions
⇒ determine
 ▶ supported instruction
 ▶ “fixed” instance set sizes
 ▶ accesses of the form

\[
\text{offset} + \text{linear in iterators}
\]

“fixed” sizes: may depend on PE, but not on tensor element
Otherwise, configuration needs to be performed before each invocation
SIMD Instructions

Loop code:

```c
handle (uint16_t index, half data) {
    for (int c3 = 0; c3 <= 4; c3 += 1)
        for (int c4 = 0; c4 <= 4; c4 += 1)
            dx_local[2 * dy_index_0 + c3][2 * index + c4] +=
                (data) * (W_local[0][c3][c4]);
}
```

SIMD instruction:

```c
handle (uint16_t index, half data) {
    set_base_address(dx, &dx_local[2 * dy_index_0][2 * index]);
    invoke_simd(fmach, dx, W, data, index);
}
```

```c
void main() {
    configure(/* 5,5; W_local: i,j -> 0,i,j; dx_local: i,j -> i,j */);
    set_base_address(W, &W_local[0][0][0]);
}
```
Challenge

Recall:

lair node guarantees:
- each statement has zero-based rectangular set of instances
- all accesses are affine (not piecewise, not quasi-affine)

SIMD detection requirements:
- “fixed” instance set sizes
- accesses of the form

 \[\text{offset} + \text{linear in iterators} \]

Trivial?
Trivial Example

```c
lair matvec<T=float16>(M, N): T W[M][N], T x[N] -> T y[M] {
    all (i, j) in (M, N)
    y[i] += W[i][j] * x[j]
}
compute_map: { ff[i, j] -> PE[j/4, i/8] }
```
Trivial Example

```c
lair matvec<T=float16>(M, N): T W[M][N], T x[N] -> T y[M] {
    all (i, j) in (M, N)
        y[i] += W[i][j] * x[j]
}

compute_map: { ff[i, j] -> PE[j//4, i//8] }
```

Computation instances:
Trivial Example

```c
lair matvec<T=float16>(M, N): T W[M][N], T x[N] -> T y[M] {
    all (i, j) in (M, N)
        y[i] += W[i][j] * x[j]
}
```

compute_map: { ff[i, j] -> PE[j//4, i//8] }

Computation instances:

Mapping to PEs
Trivial Example

```
lair matvec<T=float16>(M, N): T W[M][N], T x[N] -> T y[M] {
    all (i, j) in (M, N)
    y[i] += W[i][j] * x[j]
}
```

```
compute_map: { ff[i, j] -> PE[j//4, i//8] }
```

Computation instances:

```
Computation instances on PE:
```

```
Mapping to PEs
```

```
```

```
```

```
```
Trivial Example

```c
lair matvec<T=float16>(M, N): T W[M][N], T x[N] -> T y[M] {
    all (i, j) in (M, N)
        y[i] += W[i][j] * x[j]
}
```

```c
compute_map: { ff[i, j] -> PE[j//4, i//8] }
```

Computation instances:

Computation instances on PE:

- Mapping to PEs
- Arrival of x-value
Trivial Example

```c
lair matvec<T=float16>(M, N): T W[M][N], T x[N] -> T y[M] {
    all (i, j) in (M, N)
    y[i] += W[i][j] * x[j]
}
```

```c
compute_map: { ff[i, j] -> PE[j//4 , i //8] }
```

Computation instances:

```
\begin{array}{c c}
 i & j \\
\end{array}
```

Computation instances on PE:

```
\begin{array}{c c}
 i & j \\
\end{array}
```

- Mapping to PEs
- Arrival of x-value

⇒ Size: [8, 1]
⇒ Access to y: \(y[8\text{PE}_y + i'] \)
 (local coordinates: \(i', j' \))
Size Computation

Input: S: set of instances executed on a PE on arrival of a tensor element
Size Computation

Input: S: set of instances executed on a PE on arrival of a tensor element

- Compute element-wise minimum and maximum of S
- Construct $\{x : \min \leq x \leq \max\}$
- Check equal to S
 $\Rightarrow S$ is a dense box
- Size: $\max - \min + 1$
- Check size does not depend on "index"
Convolution

```c
    all (w, rw) in (8 - 3 + 1, 3)
    y[w] += x[w + rw] * W[rw]
}
compute_map: { C[w, rw] -> PE[0, 0] }
```
Convolution

```c
    all (w, rw) in (8 - 3 + 1, 3)
    y[w] += x[w + rw] * W[rw]
}
```

`compute_map: { C[w, rw] -> PE[0, 0] }`

Computation instances:
Convolution

```c
    all (w, rw) in (8 - 3 + 1, 3)
    y[w] += x[w + rw] * W[rw]
}

compute_map: { C[w, rw] -> PE[0, 0] }
```

Computation instances:

- Arrival of x-value
Convolution

$lair\ C() : float16\ x[8], float16\ W[3] \rightarrow float16\ y[6]\ {\ }
\quad all\ (w, rw)\ in\ (8 - 3 + 1, 3)
\quad y[w] += x[w + rw] * W[rw]$

$compute_map: \{ C[w, rw] \rightarrow PE[0, 0]\ }$

Computation instances:

- Arrival of x-value
Convolution

```c
  all (w, rw) in (8 - 3 + 1, 3)
    y[w] += x[w + rw] * W[rw]
}
```

`compute_map: { C[w, rw] -> PE[0, 0] }`

Computation instances:

- Arrival of x-value
- Compute minimum and maximum
Convolution

```c
    all (w, rw) in (8 - 3 + 1, 3)
        y[w] += x[w + rw] * W[rw]
}
```

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

- Arrival of x-value
- Compute minimum and maximum
- Construct \{ x : \text{min} \leq x \leq \text{max} \}
Convolution

 all (w, rw) in (8 - 3 + 1, 3)
 y[w] += x[w + rw] * W[rw]
}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

- Arrival of x-value
- Compute minimum and maximum
- Construct \{ x : \text{min} \leq x \leq \text{max} \}

⇒ not a dense box
Variable Compression

Variable compression (Meister 2004):

- pick affine transformation (with inverse) mapping
- lower-dimensional set to
- full-dimensional set (in lower-dimensional space)
Variable Compression

Variable compression (Meister 2004):

- pick affine transformation (with inverse) mapping
- lower-dimensional set to
- full-dimensional set (in lower-dimensional space)
Size Computation

Input: S: set of instances executed on a PE on arrival of a tensor element

- Compute element-wise minimum and maximum of S
- Construct $\{x : \text{min} \leq x \leq \text{max}\}$
- Check equal to S
 \Rightarrow S is a dense box
- Size: $\text{max} - \text{min} + 1$
- Check size does not depend on “index”
Size Computation

Input: S: set of instances executed on a PE on arrival of a tensor element

- Apply variable compression to S to obtain S'

- Compute element-wise minimum and maximum of S'

- Construct $\{ x : \min \leq x \leq \max \}$

- Check equal to S'
 $\Rightarrow S'$ is a dense box

- Size: $\max - \min + 1$

- Check size does not depend on “index”
Convolution

```c
    all (w, rw) in (8 - 3 + 1, 3)
        y[w] += x[w + rw] * W[rw]
}

compute_map: { C[w, rw] -> PE[0, 0] }
```

Computation instances:

- Arrival of x-value
- Compute minimum and maximum
- Construct $\{ x : \text{min} \leq x \leq \text{max} \}$
 - not a dense box
Convolution

```c
    all (w, rw) in (8 - 3 + 1, 3)
        y[w] += x[w + rw] * W[rw]
}
```

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

- Arrival of x-value
Convolution

```c
    all (w, rw) in (8 - 3 + 1, 3)
    y[w] += x[w + rw] * W[rw]
}
```

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

Compressed instances:
- Arrival of x-value
- Compress
Convolution

```c
    all (w, rw) in (8 - 3 + 1, 3)
        y[w] += x[w + rw] * W[rw]
}
```

`compute_map: { C[w, rw] -> PE[0, 0] }`

Computation instances:

Compressed instances:

- Arrival of x-value
- Compress
- Compute minimum and maximum
Convolution

```c
    all (w, rw) in (8 - 3 + 1, 3)
    y[w] += x[w + rw] * W[rw]
}
```

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances: Compressed instances:

- Arrival of x-value
- Compress
- Compute minimum and maximum
- Construct \{ x : \text{min} \leq x \leq \text{max} \}
Convolution

```c
    all (w, rw) in (8 - 3 + 1, 3)
        y[w] += x[w + rw] * W[rw]
}

compute_map: { C[w, rw] -> PE[0, 0] }
```

Computation instances: Compressed instances:

- Arrival of x-value
- Compress
- Compute minimum and maximum
- Construct \{ x : \text{min} \leq x \leq \text{max} \}
 \Rightarrow\ a\ dense\ box
Convolution

```c
    all (w, rw) in (8 - 3 + 1, 3)
        y[w] += x[w + rw] * W[rw]
}
compute_map: { C[w, rw] -> PE[0, 0] }
```

Computation instances: Compressed instances:
- Arrival of x-value
- Compress
- Compute minimum and maximum
- Construct \(\{ x : \min \leq x \leq \max \} \)
 \(\Rightarrow \) a dense box
 \(\Rightarrow \) Size: \(\max - \min + 1 \)
 \(\Rightarrow \) [1], [2] or [3] depending on “index”
Fixed Size Box Hull Approximation

Fixed size box hull approximation:

- Result: box containing the input set with
 - variable offset (in particular, may involve “index”)
 - fixed size (in particular, does not involve “index”)
- Approach: look for suitable constraints in representation of input set
- May fail to produce a result

(also used by PPCG (V. et al. 2013) to obtain mapping to shared memory)
Fixed Size Box Hull Approximation

Fixed size box hull approximation:

- Result: box containing the input set with
 - variable offset (in particular, may involve "index")
 - fixed size (in particular, does not involve "index")
- Approach: look for suitable constraints in representation of input set
- May fail to produce a result

(also used by PPCG (V. et al. 2013) to obtain mapping to shared memory)
Fixed Size Box Hull Approximation

Fixed size box hull approximation:

- Result: box containing the input set with
 - variable offset (in particular, may involve “index”)
 - fixed size (in particular, does not involve “index”)
- Approach: look for suitable constraints in representation of input set
- May fail to produce a result

(also used by PPCG (V. et al. 2013) to obtain mapping to shared memory)
Fixed Size Box Hull Approximation

Fixed size box hull approximation:
- Result: box containing the input set with
 - variable offset (in particular, may involve “index”)
 - fixed size (in particular, does not involve “index”)
- Approach: look for suitable constraints in representation of input set
- May fail to produce a result

(also used by PPCG (V. et al. 2013) to obtain mapping to shared memory)
Fixed Size Box Hull Approximation

Fixed size box hull approximation:
- Result: box containing the input set with
 - variable offset (in particular, may involve “index”)
 - fixed size (in particular, does not involve “index”)
- Approach: look for suitable constraints in representation of input set
- May fail to produce a result

(also used by PPCG (V. et al. 2013) to obtain mapping to shared memory)
Size Computation

Input: S: set of instances executed on a PE on arrival of a tensor element

- Apply variable compression to S to obtain S'
- Compute element-wise minimum and maximum of S'
- Construct $\{ x : \text{min} \leq x \leq \text{max} \}$
- Check equal to S'
 $\Rightarrow S'$ is a dense box
- Size: $\text{max} - \text{min} + 1$
- Check size does not depend on “index”
Size Computation

Input: S: set of instances executed on a PE on arrival of a tensor element

- Apply variable compression to S to obtain S'
- Try and compute fixed size box hull of S'
 - If successful and extra instances write to disjoint locations, then use box size. Stop.
- Compute element-wise minimum and maximum of S'
- Construct $\{x : \text{min} \leq x \leq \text{max}\}$
- Check equal to S'
 - $\Rightarrow S'$ is a dense box
- Size: $\text{max} - \text{min} + 1$
- Check size does not depend on “index”
Convolution

```cpp
    all (w, rw) in (8 - 3 + 1, 3)
    y[w] += x[w + rw] * W[rw]
}

compute_map: { C[w, rw] -> PE[0, 0] }
```

Computation instances:
Compressed instances:

- Arrival of x-value
- Compress
Convolution

```c
    all (w, rw) in (8 - 3 + 1, 3)
    y[w] += x[w + rw] * W[rw]
}
```

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

Compressed instances:

- Arrival of x-value
- Compress
- Try and compute box hull
Convolution

```cpp
    all (w, rw) in (8 - 3 + 1, 3)
    y[w] += x[w + rw] * W[rw]
}

compute_map: { C[w, rw] -> PE[0, 0] }
```

Computation instances:
Compressed instances:

- Arrival of x-value
- Compress
- Try and compute box hull
- Extra instances write to disjoint locations
Conclusion

- achieving good performance on Cerebras CS-1 requires generation of SIMD instructions
- heuristics based approach can detect opportunities in many cases, using
 - variable compression
 - fixed size box hull approximation
- effective use of polyhedral compilation techniques (other than affine scheduling)
References I

